《电子技术应用》
您所在的位置:首页 > 模拟设计 > 设计应用 > 自组织无线传感器网络方案设计
自组织无线传感器网络方案设计
摘要: 本文就国防科技大学传感器教研室开展可应用于环境监测方面无线传感器网络设计与实现进行介绍。
Abstract:
Key words :

引言

  传感测试技术正朝着多功能化、微型化、智能化、网络化、无线化的方向发展。自组织无线传感器网络(SelfOrganizingWirelessSensorNetworks)作为新兴技术,是目前国外研究的热点,其在军事、环境、健康、家庭、商业、空间探索和灾难拯救等领域展现出广阔的应用前景。早在2003年美国自然科学基金委员会已经斥巨资来支持这方面的研究,并且出现了一些致力于无线传感器网络的公司,其中Crossbow公司已推出了Mica系列传感器网络产品。国内很多大学现已经开展相关领域的研究,但大部分工作仍处在自组织无线网络协议性能仿真和硬件节点小规模实验设计阶段。本文就国防科技大学传感器教研室开展可应用于环境监测方面无线传感器网络设计与实现进行介绍。

  1 无线传感器网络硬件设计

  无线传感器网络模型(如图1所示)是不同于传统无线网络的无基础设施网,通过在监测区域内随意布撒大量传感器节点(简称节点),由各节点自行协调并迅速组建通信网络,在能量利用率优先考虑原则下进行工作任务划分以获取监视区域信息。网络的自组织特性体现在当节点失效或新节点加入时网络能够自适应重新组建,以调整全局的探测精度,充分发挥资源优势,即网络中的各节点除具备数据采集功能外兼有数据转发实现多跳的路由功能。

无线传感器网络模型

图1 无线传感器网络模型

  1.1 节点组成

  典型的无线传感器网络节点由数据采集、处理、传输和电源4个主要部分组成。传感探测单元由传感器进行监测区域内待测对象的信息采集;微控制单元实现数据的分析、处理和存储等功能;无线传输单元负责低功耗短距离节点间通信;供电单元选取小型化、高容量的电池,以确保节点的长寿命和微型化。具体节点设计如图2和图3所示。

无线传感器网络节点结构

图2 无线传感器网络节点结构

  (1)无线传输单元

  无线收发模块选用挪威Nordic公司推出的nRF401芯片。nRF401是工作在ISM频段433.92MHz/434.33MHz的单片无线收/发一体芯片,是包括了高频发射/接收、PLL合成、FSK调制/解调和双频道切换等单元的高集成度无线数传产品。其最高传输速率可达20Kb/s,接收灵敏度为-105dBm,最大发射功率为10dBm,较其他类别射频收发芯片外围电路设计简单。设计中工作频率在434.33MHz,微控制单元仅须提供四根口线:收发状态切换TXEN、待机与工作状态切换PWRUP和数据通信接口线DIN/DOUT。射频信号输出设计采用环形差分输出天线。

无线传感器网络节点实物图片锁定

  (2)微控制单元

  TI公司MSP430系列单片机是一种具有集成度高、功能丰富、功耗极低等技术特点的16位单片机。超低功耗的混合信号控制器、丰富的片内外设、节能考虑的多种工作模式和对C语言程序设计的支持,使得MSP430系列单片机非常适合于应用在嵌入式系统中。设计中选用带有Flash存储器可进行在线编程的MSP430x13x、MSP430x14x系列单片机;外围模块有看门狗、定时器A/B、同步/异步串行通信接口、10/12位A/D以及6个8位并行端口等多种组合形式。其实现功能如下:

  ◇操作无线收发芯片,为nRF401提供工作状态控制线和两条单向串行传输数据线;

  ◇实现传感器的数据采集———加速度、温度、声音和感光强度探测;

  ◇本地数据处理———剔除冗余数据,以减少网络传输的负载和对无线传输数据的封装与验证;

  ◇应答远控中心查询,完成数据的转发与存储;

  ◇区域内节点的路由维护功能;

  ◇节点电源管理,合理地设置待机状态,以节省能量消耗,延长节点使用寿命。

无线传感器网络节点工作流程图

图5 无线传感器网络节点工作流程图

  上位PC机作为控制中心必须具备网络唤醒、数据处理、路由维护功能,C++Builder、Delphi和微软的VisualBasic都是可选的快速开发工具。上层软件功能由Delphi实现,图6为无线传感器网络探测系统框图。

  考虑到点对点通信的可靠性,数据在底层无线传输中需要增加必要的协议规范。设计中对有效数据进行打包,格式为:前导码、地址、有效数据载荷、校验码。针对nRF40x系列芯片,按厂家建议在支持UART方式下使用0x55FF(十六进制)作为“前导码”;“地址”作为不同应答点的标识;“有效数据载荷”则包含满足上层设计协议格式的数据包,该部分需根据应用要求尽量减小数据包长,以缩短该数据包在传输链路的生存期,数据包末尾增加“校验码”

  可以验证数据的有效性,CRC(循环冗余码)是一种简单易行的处理方法,数据封装与处理全部由微控制单元实现。

无线传感器网络探测系统框图

图6 无线传感器网络探测系统框图

  3 组网技术研究

  对应nRF401使用的434.33MHz频点,在组网设计中通信方式采用TDMA(时分复用)方式:sink点分时段对网络中节点进行查询,若节点有突发事件探测,则随机选择空闲时隙将数据上传。当信道处于阻塞状态则采用随机退避机制,等待信道处于空闲状态再进行数据传输,因此各节点在通信过程中必须避免长时间对信道的占用。

  网络的可靠性和高效性关键是合理的通信协议设计,SPIN(SensorProtocolforInformationviaNegotiation)是以数据为中心的自适应路由协议,通过协商机制来避免数据传输过程中的“内爆”和“重叠”问题,传感器各节点只有在相应的请求时,才有目的地发送数据信息。SPIN协议中有3种类型的消息:ADV广播数据发送、REQ请求数据接收和DATA数据封装。

  自组织无线传感器网的网络拓扑可分为3种:

  ①基于簇(Cluster)的分层结构。簇头就是分布式处理中心,收集簇成员数据并完成数据处理和融合,最后将数据由其他簇头多跳转发或直接传回sink点。

  ②基于网(Mesh)的平面结构。在这种结构下传感器网络连成一张网,临近节点直接通信;在个别链路和传感器节点发生失效时不会引起网络分立。

  ③基于链(Chain)的线结构。在这种结构下传感器节点被串联在一条或多条链上,链尾与用户节点相连。由于链型结构更易于在网络初始化中实现,因此设计中采用该种网络拓扑。

  实现超低功耗即可延长节点和网络的寿命。节点的能量消耗有3方面:传感器件数据采集、微控制单元的数据存储与处理和无线模块数据接收/发射。其中能量消耗最大的是在射频信号发射过程中,因此必须合理地切换芯片收发,并设置节点休眠与唤醒状态,以最大限度降低能量消耗。

  4  结语

  基于MSP430的无线传感器网络设计在小规模实验中表现出良好稳定的效果,可在特殊环境下实现监测区域内信号的采集传输与处理。伴随无线自组织网络技术的成熟和新的能量解决方案的提出,无线传感器网络的应用必将广泛深入环境监测、医疗保健、空间探索和灾害预测等各领域。

 

  

此内容为AET网站原创,未经授权禁止转载。