《电子技术应用》
您所在的位置:首页 > 测试测量 > 设计应用 > 红外热成像技术在设备维护中的应用
红外热成像技术在设备维护中的应用
摘要: 发热常常是设备损坏或功能故障的早期征兆,这使它成为在预测性维护(PDM)计划中所监视的一个关键性能参...
Abstract:
Key words :

  发热常常是设备损坏或功能故障的早期征兆,这使它成为在预测性维护 (PDM) 计划中所监视的一个关键性能参数。进行红外热像预测性维护的技术人员定期对关键设备的温度进行检查,从而可以随时间跟踪设备的运行状况,并快速发现异常读数以便进一步检查。通过监视设备性能并在需要时安排维护,可降低因设备故障而发生的非计划性停产的可能性,减少维护费用和设备维修的成本,延长设备资产的寿命,并最大限度地提高维护效果和生产能力。

  红外热像技术原理

  1800年英国的天文学家William Herschel 用分光棱镜将太阳光分解成从红色到紫色的单色光,依次测量不同颜色光的热效应。他发现,当水银温度计移到红色光边界以外,人眼看不见任何光线的黑暗区的时候,温度反而比红光区更高。反复试验证明,在红光外侧,确实存在一种人眼看不见的“热线”,后来称为“红外线”,也就是“红外辐射”。自然界任何物体,只要温度高于绝对零度(-273.15℃),就会以电磁辐射的形式在非常宽的波长范围内发射能量,产生电磁波(辐射能)。

  红外线在大气中穿透比较好的波段,通常称为“大气窗口”。红外热成像检测技术就是利用了所谓的“大气窗口”。短波窗口在1~5μm之间,而长波窗口则是在8~14μm之间。

  从普朗克定律可以得知,物体的温度越高,其辐射的峰值能量就越偏向短波方向,故红外热像仪,特别是用以建筑检测的红外热像仪,其工作波段通常在8-14μm的长波波段,建筑用红外检测的温度范围一般在-20-100℃范围内。

  红外热像仪是一种新型的光电探测设备,可将被测目标表面的热信息瞬间可视化,快速定位故障,并且在专业的分析软件帮助下,可进行分析,完成建筑节能、安全检测和电气预防性维护工作。

  热像仪由两个基本部分组成:光学器件和探测器。光学器件将物体发出的红外辐射聚集到探测器上,探测器把入射的辐射转换成电信号,进而被处理成可见图像,即热图(见图1)。

  设备预测性维护介绍

  红外热成像仪是预测性维护计划中的第一道防线。技术人员可以迅速测量并比较检查路线上每台设备的热量特征,无需中断设备运行。

  如果温度与以前的读数有明显的不同,则可以使用其他维护技术(振动分析、电机电路分析、空气超声波分析以及润滑油分析等)来调查问题原因,并决定下一步的行动。

  为获得最佳结果,将您的所有维护技术集成到同一个计算机系统内,以便它们共享相同的设备列表、历史数据、报告和工作订单。在将红外数据与来自其他技术的数据进行关联之后,就可以一种综合的形式来报告所有机器设备的实际运行状况。

 

  红外热像设备预测性维护过程

  1. 开始时使用来自计算机化维护管理系统 (CMMS) 或其它库存管理工具的现有设备清单。

  2. 摒弃不适于红外测量的部件。

  3. 检查维护和生产记录。对易于出故障或经常引起生产问题的关键设备进行优先级排序。

  4. 用一个数据库或电子表格程序,按区域或功能将关键设备集中在一起,划分为几个大致2-3 小时的检查区。

  5. 使用热成像仪来获取每台关键设备的基准图像时要注意:在某些设备上,您可能要定期捕获关键部件或子系统的多个热图像。

  6. 将基准图像下载到软件中,并在需要时通过位置名称、检查说明、发射率以及 RTC 和报警值来对您的检查路线进行归档。

  7. 当要进行下一次检查时,如果您的热成像仪支持数据上载,则只需将以前的检查图像装到成像仪中,并按屏幕提示进行操作。

  应用介绍

  电机检测

  电机的部件较多,发生故障的部位及原因也较多,通过红外热像仪可发现以下问题。

  (1)电气接线(电气接线盒外壳)

  问题点:接线端子过热。

  可能原因:连接松脱、接线端子氧化腐蚀、连接过紧。

  建议措施:重新连接或更换接线端子。

  问题点:电缆过热。

  可能原因:不平衡电压或过载。

  建议措施:使用万用表、钳表或电能质量分析仪予以确认具体原因。

 

 

  (2)电机外壳温度分布

  问题点:外壳部分区域温度过高。

  可能原因:内部铁芯、绕组因绝缘层老化或损坏导致短路。

  建议措施:拆卸外壳进行检修。

  问题点:外壳整体温度过高

  可能原因:空气流动不充分导致散热故障。

  建议措施:如果停机时间短,则只对电机空气进口格栅进行清洗;并在下一次有计划的停机检修中,安排一次彻底的电机清洗。

  (3)与电机连接的轴承、连轴器

  问题点:轴承、连轴器温度过高。

  可能原因:润滑不良或轴未对中。

  建议措施:检查润滑情况或对轴进行调整。

  变压器检测

  变压器箱体由于油路管道堵塞、涡流损耗、内部异常、铁芯绝缘不良等造成发热,红外热像仪对变压器箱体的检测可以使变压器箱体始终处于正常温度,避免变压器因温度过高而损坏。

  电容器柜

  电容器在供电系统中主要作无功补偿或移相使用,大量装配在各级变配电系统里。在用电负荷较高的行业(如石化、冶金、造纸、汽车等),电容器柜是车间内最常见的电气设备,其发生故障的频率相对较高;一旦电容器发生故障,轻则会影响到供电质量,严重时还会引发爆炸,导致停产事故。电容器内部的电介质或载流导体附近电气绝缘的电介质在交流电压作用下引起的能量损耗 (介质损耗),即使在正常状态下,设备内部的介质和导体周围的绝缘介质在交流电压作用下,也会有介质损耗发热。当绝缘介质的绝缘性能出现缺陷时,会引起介质损耗增大,电容值变大,导致介质损耗发热功率增加,从而引起设备运行温度增加。

  根据DL/T 664《带电设备红外诊断技术应用导则》,耦合电容器的异常热像特征为整体或局部有明显发热,允许的最大温升为1.5℃(膜纸型),允许的同类温差为0.5℃(膜纸型)。

  传送带和皮带轮

  橡胶制传送带的应用范围最广,但橡胶因受长期摩擦或过热轴承的热量传递,容易发生老化、导致断裂,严重时会引发停产等生产事故。红外热像仪可在橡胶传送带发生过热、老化的初级阶段及时发现故障隐患,避免事故损失。

  在橡胶传送带上受到两个摩擦力:一是与传送带上物体的静摩擦力,若物体与传送带有相对运动,静摩擦力则变为动摩擦力;二是与传动轴的静摩擦力,若传送带发生老化,与轴承间也将转变为动摩擦力。动摩擦力比静摩擦力给传动带造成的发热量大,橡胶是容易受到高温老化的材料,长时间处于高温状态下,橡胶会发生损坏、断裂。此外,由于传送带上的物品放置不平衡,导致传送带向一侧倾斜,也会导致橡胶传送带与一侧的传动轴的压力增大,造成橡胶传动带局部过热。

 

此内容为AET网站原创,未经授权禁止转载。