《电子技术应用》
您所在的位置:首页 > 其他 > 设计应用 > 基于自抗扰控制器的PMSM矢量控制系统设计与实现
基于自抗扰控制器的PMSM矢量控制系统设计与实现
来源:电子技术应用2011年第9期
刘 清, 王太勇, 董靖川, 刘清建, 李 勃
(天津大学 机械学院, 天津300072)
摘要: 针对永磁同步电机存在的非线性、强耦合、参数摄动等问题,设计并实现了基于自抗扰控制器(ADRC)的矢量控制系统。首先提出基于ADRC的控制策略,实时观测出由系统内部非线性因素以及外部扰动引起的“内外扰动”并进行补偿,从而实现精确控制;其次研制基于DSP的多轴运动控制卡,并在此基础上实现了基于ADRC的PMSM矢量控制系统。仿真及实验结果表明,系统具有良好的动态性能及鲁棒性,能够快速加工出符合要求的模型。
中图分类号: TM351
文献标识码: A
文章编号: 0258-7998(2011)09-104-03
Applications of speed controller for a PMSM based on active disturbance rejection controller
Liu Qing, Wang Taiyong, Dong Jingchuan, Liu Qingjian, Li Bo
School of Mechanical Engineering, Tianjin University, Tianjin 300072,China
Abstract: The permanent magnet synchronous machine (PMSM ) is a nonlinear multi variable coupled system. This paper proposed a vector control system based on the auto disturbance rejection controller(ADRC). Firstly, a strategy based on ADRC is proposed to estimated and compensated the disturbances. Second, a DSP-based multi-axis motion control card is designed. Simulation and experimental results show that the vector control system is simple, and will improve the stability, robustness and adaptability in the system significantly.
Key words : PMSM; vector control; ADRC; nonlinear


    永磁同步电机PMSM(Permanent Magner Synchronous Machine)具有功率密度高、体积小、效率高、惯量小等优点,广泛应用于数控机床领域[1]。然而PMSM是一个非线性、强耦合、参数摄动的多变量系统,对于外界扰动以及系统参数变化比较敏感,因此对于控制系统要求较高,既要具有高性能的软硬件结构,又要具有高性能的控制策略和控制算法[2]。
 为了提高PMSM控制性能, 国内外学者展开了广泛研究。参考文献[3]提出一种基于状态观测和反馈的控制策略, 参考文献[4]提出一种基于自抗扰控制器的控制策略,这些方法具有良好的动静态性能,却未考虑电流环中耦合非线性因素的影响,无法从根本上解决非线性问题;参考文献[5]提出一种基于模糊自适应PID及干扰观测器的三环控制策略,但是这种方法算法较复杂,实时性较差。
 本文提出并实现了一种基于自抗扰控制器[6-7](ADRC)的PMSM矢量控制系统。首先设计基于ADRC的控制器,实时观测出由系统内部非线性因素以及外部扰动引起的“内外扰动”并进行补偿,从而实现精确控制。其次自行研制了基于DSP的多轴运动控制卡,并在此基础上实现了基于ADRC的矢量控制系统。仿真及实验结果表明,系统具有良好的动态性能及鲁棒性,能够快速加工出符合要求的模型。
1 ADRC数学模型
 自抗扰控制器是一种基于误差反馈的新型控制器,主要由非线性跟踪微分器(NTD)、扩张状态观测器(ESO)、非线性误差反馈(NLSEF)三部分组成,对于形如式(1)的非线性不确定对象具有良好的控制效果。

    式(9)~式(12)中V1是电流给定的跟踪值,Z1是电流观测的跟踪值。使用ESO实时观测出系统“内外扰动”并加以精确补偿,即可消除耦合非线性因素的影响,从而实现电流环的准确解耦控制。由于电流环已经抑制了各种扰动,因此为了简化控制器结构,设计速度环以及位置环控制器时可将非线性跟踪微分器省略。PMSM矢量控制系统结构见图2。

 

 

3 控制系统实现
 本文自行研制了基于DSP的多轴运动控制卡,运动控制卡充分利用计算机资源,具有高度的集成性、可靠性以及实时性。
   图3是控制系统整体结构图,系统分为上位机和下位机两大部分。上位机ARM主要进行加工指令输入以及译码等操作;下位机DSP通过D/A模块控制多个电机,并通过FPGA模块解码编码器反馈信号,在此基础上实现电机的闭环控制。基于DSP的多轴运动控制卡的主要功能模块包括:

   (1) 采用美国TI公司TMS320C2000系列高端运动控制芯片作为系统核心DSP芯片以实现系统的实时处理以及复杂运算;
   (2) 采用双口RAM实现运动控制卡与上位机之间的高速通信;
   (3) 采用CPLD以及FPGA实现I/O、片选、编码器反馈解码等控制功能的扩充;
   (4) 采用D/A模块实现对电机的伺服控制。
 为了验证基于ADRC的运动控制系统对于永磁同步电机的矢量控制效果,本文进行了以下工作:
 (1) 通过仿真软件包Matlab R2008a Simulink平台进行仿真以验证控制策略的可行性。图4是分别采用经典PID以及ADRC进行对比控制时的转子位置响应曲线,由图中可以看出采用ADRC时超调较小,响应速度较快,系统性能良好。
    (2)进行基于DSP的多轴运动控制卡与电机的联调以测试运动控制系统性能。图5、图6分别是系统输出电压电流波形以及电流频谱,由图中可以看出系统输出光滑而且稳定,能够在相当大程度上抑制谐波。
    (3) 应用运动控制系统进行模型加工。基于ADRC的控制系统能够快速、准确地加工出符合设计的要求的模型。

    本文提出并实现了一种基于自抗扰控制器(ADRC)的PMSM矢量控制系统。首先设计了基于ADRC的控制器,将系统内部非线性项作为“系统内扰”,实时观测出系统内外扰动的综合并进行补偿;其次自行研制了基于DSP的多轴运动控制卡,并在此基础上实现了基于ADRC的矢量控制系统。仿真及实验结果表明系统性能良好,能够快速加工出符合要求的模型。
参考文献
[1] Yasser Abdel-Rady Ibrahim Mohamed. Design and implementation of a robust current-control scheme for a PMSM vector drive with a simple adaptive disturbance observer[J]. IEEE Transactions on Energy Conversion, 2007,54(4):1981-1988.
[2] Yasser Abdel-Rady Ibrahim Mohamed,Ehab F. El-Saadany. A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM Drive Systems[J]. IEEE Transactions on Energy Conversion, 2008,23(1):92-100.
[3] 郑泽东,李永东,FADEL M,等.基于状态观测和反馈的伺服系统位置控制器[J].清华大学学报(自然科学版),2008,48(1):24-27.
[4] 孙 凯,许镇琳,盖廓.等, 基于自抗扰控制器的永磁同步电机位置伺服系统[J]. 中国电机工程学报,2007,27(15):43-46.
[5] 刘子建,吴敏,陈鑫,等.永磁同步电机混合非线性控制策略[J]. 浙江大学学报, 2010,44(7):1303-1307.
[6] 韩京清. 自抗扰控制器及其应用[J].控制与决策,1998,13(1):19-23.
[7] 韩京清. 从PID技术到“自抗扰控制”技术[J].控制工程, 2002,9(3):13-18.

此内容为AET网站原创,未经授权禁止转载。