摘 要: 根据汽车发动机控制芯片的工作环境,针对常见的温度失效问题,提出了一种应用在发动机控制芯片中的带隙基准电压源电路。该电路采用0.18 μm CMOS工艺,采用电流型带隙基准电压源结构,具有适应低电源电压、电源抑制比高的特点。同时还提出一种使用不同温度系数的电阻进行高阶补偿的方法,实现了较宽温度范围内的低温度系数。仿真结果表明,该带隙基准电路在-50℃~+125℃的温度范围内,实现平均输出电压误差仅5.2 ppm/℃,可用于要求极端严格的发动机温度环境。该电路电源共模抑制比最大为99 dB,可以有效缓解由发动机在不同工况下产生的电源纹波对输出参考电压的影响。
关键词: 汽车电子;电路失效;带隙基准源;电源共模抑制比;电压纹波
发动机控制芯片在汽车中得到了广泛的应用,是汽车电子的核心部分之一。发动机控制芯片结合了大量的传感器接口电路、ADC、控制器等模拟与数字电路模块。对于模拟电路,过低和过高的温度,都可能会导致芯片失效。极限温度导致电路失效的原因通常有:电路的偏置电流随温度变化过大,使得电路偏离了正常工作状态;电路输出节点的共模电压随温度的变化产生了漂移,导致下一级电路无法正常偏置等问题。
在模拟电路设计中,带隙基准电压/电流源负责给偏置电路提供稳定、不随温度变化的偏置参考电流和电压,用来给电路提供稳定的偏置电流和共模电压。发动机控制芯片通常安装在发动机周围,发动机舱在长途行车过程中的极限温度可能会高达125℃。而在寒冷地区,冷车状态下发动机舱温度可能低至-40℃。在如此大的温度跨度下,要保证发动机控制芯片可以正常运作,参考电流源与参考电压源的误差必须控制在很小的范围之内,这对带隙基准模块的设计提出了更高的要求。该基准电路必须在-40℃~125℃的范围内提供恒定的输出电压/电流信号。因此,应该具有更低的温度系数和更宽的工作温度范围。此外,由于发动机的工况经常因行驶情况而改变,同时由于发动机舱内各种电气开关带来的电压波动,给发动机控制芯片供电的电源电压通常会经历严重的纹波干扰。这要求芯片中的带隙基准源应具备较强的电源抑制比。本文正是从以上两点出发,提出了一种针对汽车控制芯片的带隙基准电压源电路,用于降低由极限温度引发的芯片失效风险。
1 带隙基准电压源电路设计与分析
带隙基准的核心原理是产生一个具有一阶正温度系数的电压/电流量,与一个具有一阶负温度系数的电压/电流量以一定的系数相加,以达到抵消温度系数的效果。一个双极晶体管的基极与发射极电压Vbe就可以看成是一个常用的负温度系数源。将一个三极管连接成二极管形式,对Vbe求偏导,可以得到以下结论:
本文提出一种基于不同温度系数电阻的二阶温度补偿方法,其电路原理图如图6所示。在图2所示的一阶电路的基础上增加3个多晶硅电阻(R6~R8),该电阻与一阶电路中的扩散电阻具有不同的温度系数。仿真结果表明,使用该方法可以实现175℃温度范围内0.25 mV的输出电压误差。
由三极管Q1~Q2,电阻R1~R8、晶体管M1~M3、误差放大器A1组成一阶带隙基准电压源核心电路。Q3、M6~M8用来产生与温度呈正比例关系变化的电流IPTAT,提供给发动机控制芯片中的温度传感器模块。R1、R3和R4为扩散电阻,具有正温度系数。R6~R8为多晶硅电阻,具有负温度系数,在电路中起到高阶温度补偿的作用。M5、M10、R5、Q3组成启动电路,在芯片上电时,M5导通,当电路进入正常工作状态后,M5自动被切断。
式(5)中的前两项与式(3)相同,第三项为高阶补偿项。由于R6与R2具有不同温度系数,故R6/R2至少是温度的一阶函数,由于VT本身是温度的一阶函数,故第三项至少是温度的二阶函数。通过合理地选择R6值,可以较大程度上抵消Vbe的高阶温度系数。
经过本文方法补偿后的输出电压随温度变化曲线如图7所示。从图中可以看出,从-50℃变化到125℃的过程中,输出电压最大只变化了0.25 mV,达到了显著的补偿效果。此外,由于采用了电流型带隙基准源结构,R1、R3与双极性器件所在支路并联,降低了所在支路的等效电阻,从而减弱了电源电压波动对该节点电压的影响,提高了电源抑制比。图8所示为误差放大器A1的原理图,该误差放大器使用折叠共源放大结构。输入跨导级为双极型NPN管,可以降低放大器失调与噪声带来的影响。此外,还需要注意的是,在有误差放大器的基准电路中,正反馈环路与负反馈环路是同时存在的,如图6所示,M2、R2、Q2所在支路是负反馈,而M1、Q1所在支路则是正反馈。为了保证电路稳定性,需要使该系统总体上表现为负反馈,因此负反馈系数应该大于正反馈系数。在本设计中,R2与Q2的导通电阻1/gm2的和大于Q1的导通电阻1/gm1,使电路的稳定性得到了保证。
本文提出一种基于使用SMIC 0.18 μm MIXIC工艺,应用于发动机控制芯片的带隙基准电压源电路,该电路在一阶电流型带隙基准源基本结构的基础上,使用不同温度系数的电阻进行了简单有效的二阶温度系数补偿。该基准电压源在-50℃~125℃温度范围内,输出参考电压误差小于0.25 mV,低频时电源抑制比可以达到99 dB。该基准电路具有良好的温度稳定性与抗电源干扰能力,其在发动机控制芯片中有很好的应用价值。
参考文献
[1] JOHNS D, MARTIN K. Analog integrated circuit design[M]. Wiley,1997.
[2] BANBA H, SHIGA H, UMEZAWA A, et al. A CMOS bandgap reference circuit with sub-1-V operation[J]. IEEE Journal of Solid-State Circuits, 1999,34:670-674.
[3] LEUNG K N, MOK P K T. A sub-1-V 15-ppm/℃ CMOS bandgap voltage reference without requiring low threshold voltage device[J]. IEEE Journal of Solid-State Circuits, 2002,37:526-530.
[4] Xing Xinpeng, Li Dongmei, Wang Zhihua. A novel CMOS current mode bandgap reference[J]. Journal of Semiconductors, 2008, 29(7): 1249-1253.
[5] 盛庆华,张亚君,王红义. 一种线性补偿的带隙基准电路[J].微电子学与计算机,2007,24(1):167-172.