文献标识码: A
文章编号: 0258-7998(2012)09-0144-03
小型连接件广泛应用于电子拔插设备中,其尺寸是否合格直接影响电子产品的使用寿命。机器视觉是一种基于图像处理技术的非接触式测量技术,检测结果精确、可靠。在尺寸检测中,一般采用短焦距定焦光学镜头,因此不可避免地将引入非线性畸变。另外,机器视觉图像处理的结果通常为像素个数,实际应用中需要得到像素与实际尺寸之间的关系,才能换算出实际尺寸,所以需要进行摄像机标定得到畸变参数和像素当量[1-2]。
亚像素检测方法目前已被广泛应用于高精度测量中,亚像素表示图像中每个像素将会被分为更小单元,达到更高精度。传统的边缘检测算子,如Sobel算子、Canny算子等对图像边缘的定位只能达到像素级,Zernike矩方法是亚像素边缘检测算子中应用最广泛的方法[3],其定位精度和运行时间均优于其他的空间算子。
本文首先对摄像机进行标定,采用双线定位法找到针脚位置,最后利用基于Zernike矩的亚像素边缘检测算法找到针缘边位置,计算针宽。实验结果表明,该方法检测精度高、效果好。
1 摄像机标定
1.1 畸变参数
实际摄像机的透镜总是在成像仪的边缘位置产生显著的畸变,畸变主要分为径向畸变和切向畸变两种。径向畸变来自于透镜形状的设计,而切向畸变来自于整个摄像机的组装过程中[4]。针对径向畸变,成像仪中心的畸变为0,随着向边缘移动,畸变越来越重,成像仪某点的径向位置可按下式进行调节:
其中,xi为左侧边缘点横坐标,xi′为xi同纵坐标下右侧边缘点横坐标。
根据标定图像可得每33.6个像素对应实际距离为0.2cm,计算结果见表1。
通过实验分析和比较结果表明,通过摄像机标定可以有效地消除摄像头畸变,为后续尺寸测量精度提供保障,而且基于Zernike矩的亚像素边缘检测方法不仅提高了边缘检测的精度,同时也缩小了尺寸检测中的误差。
参考文献
[1] 李文涛.基于两步法的摄像机标定[J].控制工程,2011,9(18):48-51.
[2] 高俊钗,雷志勇,王泽民.高精度测量的相机标定[J].电光与控制,2011,18(2):93-96.
[3] 韩丽燕,陈方林.一种Zernike矩亚像素边缘检测的优化算法[J].电子测试,2010,6(6):1-5.
[4] 李明金,熊显名,张绍兵.一种基于Opencv的摄像机标定新方法[J].激光与光电子学进展,2009(12):99-102.
[5] 马艳娥,高磊,吕晶晶.基于改进的Canny算子和Zernike矩的亚像素边缘检测方法[J].电子测试,2011,7(7):20-23.
[6] PAPAKOSTAS G A, BOUTALIS Y S. Numerical error analysis in Zernike moments computation[J]. Image of Computer Vision, 2006,24(9):960-969.