一、引言
众所周知,由于各种电力电子器件导通工作时总有压降、阻断或截止工作时定有漏电流流过,所以,电力电子器件在工作时都要发热,一个设计可靠的电力电子变流设备应能对这些热量具有及时散热措施,避免热积累,保证长期工作时电力电子器件的壳温及结温在安全工作值之下,如今随着工业中对电力电子变流设备输出电流需求的日益增大,至今用于电力电子变流设备中保障其散热,而使其长期可靠工作的冷却介质和方法有:采用自然冷却的金属散热器,采用油浸冷却的管式及板式散热器,强迫风冷却的散热器风道,强迫水冷却的水包,热管散热器等等,一般对工作时输出电流在3kA以上的电力电子变流设备,电力电子行业的工程师们更喜欢采用水冷却方式,其原因是水冷却方式冷却功率大,冷却效果好,本文不想对其他冷却方式进行分析,而仅对水冷却方式的存在问题,冷却时应注意的事项和水冷却方式造成的附加功率损耗,以及各种冷却水的附加损耗大小进行分析和比较,以期抛砖引玉,引起同行们的重视。
二、水冷却方案中的冷却水质及水路分析
2.1 常见冷却水源
在国内电力电子变流设备行业,因电化学、电解、有色金属加工及冶炼使用的需要,决定了在这些场合电力电子变流设备的输出电流多在3kA以上,所以往往采用水冷却方案,常见的有电解、电镀、电弧炉、碳化硅、中频感应加热用电力电子变流设备,且随输出电压等级及用户是否愿投资等等的不同,多采用城市自来水、外购纯净水、自备工业水池中的循环水或安装水处理器处理后的水质作为冷却水源,由于这些水质的纯净度,含杂质情况的不同,会对被冷却电力电子变流设备的使用寿命造成很大影响,同时冷却时造成的附加功率损耗也会有很大的不同。
2.2 主电路结构与水路连接
无论采用何种冷却水源,电力电子变流设备的常见主电路结构和水回路连接都是采用一个总进水管和一个总出水管,然后在电力电子变流设备内部按进行电力电子变流的器件臂的个数和不同相数或是否有保护用熔断器臂而分为多个分进水管和分出水管,通常总进水管与总出水管采用不锈钢管或钢管或PVC管,而分水管使用可承受3~5kg压力的塑料水管。图1给出了陕西高科电力电子有限责任公司生产的50kW中频电力电子变流设备的水路结构图和主电路原理简图。从该图可以明显看出,主电路中不同相及不同母线间的电压是不同的,冷却过程中通过冷却水路将这些不同电压相位或不同电压的母线连接在一起,所有晶闸管是采用双面水冷却的,为提高绝缘强度使用中把三相桥式全控整流
图1 500kW感应加热用晶闸管中频电力电子变流设备的主电路原理及水路连接图
a) 主电路原理简图 b) 水路结构图
图2给出了陕西高科电力电子有限责任公司生产的采用三相桥式同相逆并联可控整流的6脉波,直流输出30kA/500V的电解用电力电子变流设备的主电路原理图及冷却水路连接图,应注意的是,主电路图中每个晶闸管代表了图2b所示的5个晶闸管元件的并联组,而图2b仅画出了一组整流臂的快速熔断器臂和晶闸管器件臂的水路连接图,显见快速熔断器臂与晶闸管元件使用双面冷却,而快速熔断器为单面冷却,每组整流臂共有3个分进水管和3个分出水管,因该电力电子变流设备共有12个整流臂,故总共有38个分进水管和38个分出水管,其中已考虑了正负汇流母线的进出水管,从图2可见,不同电位的交流及直流母线之间是通过冷却水管连接在一起的,同样存在运行中各分水管通水后通过总进出水管将不同电压的器件连接在一起,因而水质及水的绝缘性能对该电力电子变流设备的安全可靠运行及附加功率损耗的大小有着决定性的作用。
图2 采用三相桥式同相逆并联可控整流的主电路结构和一个整流臂的水路连接图
a) 主电路原理图 b) 水路连接图
三、冷却水质及附加功率损耗的分析与计算
随着电力电子变流设备主电路工作电压高低及输出电流大小和应用场合以及所使用该变流设备用途的不同,冷却水的水源有城市自来水、饮用纯净水、电厂购纯水、循环水池工业用水以及专用水处理器处理后的水五种,为了分析不同水源水质绝缘性能和水的电阻率,我们曾专门进行了测试,测试电路如图3所示,其中PVC管内径为Ф14.3mm,测试结果如表1所列。
从该表显见,在同样的水截面S与水路长度之条件下 ,电厂购得的纯水其绝缘电阻最大,绝缘性能也最好,另一方面,我们可以明显看到无论采用什么样的冷却水,其绝缘电阻都不是无穷大,所以总要有漏电流,总要消耗费电功率,总会给使用者造成附加功率损耗,因而对额定运行电压较高的电力电子变流设备,其水路应人为加长,以减小附加功率和提高绝缘电阻。
四、因冷却水绝缘电阻有限引起的附加损耗计算
为了说明冷却水引起的附加功率损耗,现分别针对图1与图2所示的两个电力电子变流设备的水路引起的附加损耗进行计算。
1.500kW感应加热用中频电力电子变流设备的附加损耗
为方便计算,考虑图1中所示的水路长度,根据柜内电力电子器件的安装位置减去晶闸管及电抗器的有效长度便可得到实际水路的长度及不同水质的绝缘电阻如表2所列,计算中考虑到一般总汇水管为钢质直接安装在柜壳上,而柜壳几乎都是接地的实情。
2.500V/30kA电解用电力电子变流设备冷却水引起的附加损耗
从图3可以看出,500V/30kA电解用电力电子变流设备共有38个进水管和38个出水管,表4给出了其水路长度和不同冷却水质时的水绝缘电阻,而表5给出了不同冷却水质时的附加功耗,同样看出电厂购得的纯水冷却,其绝缘性能最好,附加损耗最低,而以工业水池中循环水的绝缘性能最差,用其冷却附加功率损耗最大,,每小时消耗的功率损失为4.72795kW,按年生产350天计算,年共造成附加损耗39714.76度, 若按每度电0.78元计算,年共造成电费损失30977.51元。
五、结论
综上分析和计算结果,我们可得下述结论:
1.采用水冷却方案的电力电子变流设备中的冷却水其绝缘电阻是有限的,应用中会引起附加损耗;
2.在城市自来水、工业水池循环水、经水处理器处理后的纯水,康师傅矿泉水与从电厂购的纯水五种冷却水源中,以电厂购的纯水水质最好,附加损耗最小,而工业水池的循环水水质相对较差,引起的附加损耗较大,应尽可能使用电厂购的纯水作为冷却水源;
3.一台500V/30kA的水冷却电力电子变流设备,在上述冷却水路长度时,其每年年共造成附加损耗39714.76度, 另人震惊;
4.为减小损耗应加大水路长度,将总进出水管改为PVC管,尽可能的使用纯水是个很好的解决方案之一。