基于在线软件工具的数字电源UCD92xx反馈环路调试指南
2013-07-16
作者:Neil Li, Sundy Xu
来源:China Telecom Application Team
摘要
基于UCD92xx 的非隔离数字电源系统由控制芯片和功率级芯片构成。功率级芯片由Mosfet 驱动和功率Mosfet组成,包括独立的Mosfet 驱动(如UCD7232),或者集成Mosfet 的功率级芯片(如UCD7242 和UCD74120等)。通过与UCD92xx 配套使用的在线工具Fusion Digital Power Designer 可以在线调节反馈环路,提高环路调节的效率。本文在一款基于UCD9224 和UCD74120 的数字电源板上演示如何在线调节环路。
1、引言
设计一款基于UCD92xx 的非隔离数字电源,需要首先选择合适的控制芯片和功率级芯片。当功率级芯片选用UCD74120 时,因其内部集成了驱动器和BUCK 上下管,外围只需增加电感和输出电容即可。然后可以使用在线软件工具对整个电源系统进行配置和调节。
1.1 数字电源控制器UCD92xx
UCD92xx 是内部集成ARM7 核的非隔离数字电源控制器,可以灵活的配置为多路或多相模式,以UCD9224 为例,可以配置其为双路输出或单路四相并联输出等。 图1 是UCD9224 的内部框图,关键模块包括:
● Fusion Power Peripheral:包含输出电压误差的采集,环路补偿及DPWM 的输出等;
● ADC 采样模块:包含10 个ADC 接口,用来对外部信息(如温度,电流)和内部信息(温度)进行采集;
● Analog Comparators 模块:包含三个模拟比较器,用来完成对过流等故障的快速保护;
● ARM-7 模块:包含ARM-7 核,Flash 和晶振等;
● PMBUS 模块:通讯接口,用来与上位机进行通信;
● 其它:包括SRE 控制等模块,用来控制BUCK 运行于同步整流还是非同步整流模式;
图1:UCD9224 内部框图 图2:UCD74120 内部框图
1.2 功率级芯片UCD74120
UCD74120 是一款集成了驱动器和BUCK 上下管的功率级芯片,最大输出电流为25A,内部框图如图2。该芯片同时具有电流检测及上报(给UCD92xx)功能,过流保护(输出电流的过流保护和BUCK 上管过流保护),欠压保护,过温保护及故障上报功能(通过FLT 管脚)等。
1.3 在线调试软件Fusion Digital Power Designer
TI 提供与UCD92xx 配套的在线工具集:Fusion Digital Power Designer,包括offline 模式和online 模式。Offline模式用来离线配置,而online 模式可以在线对UCD92xx 配置和监控。本文涉及的在线环路调节是使用online 模式软件。图3,4,5,6 显示的即为该软件工具的四个主要功能模块。
● 配置:如图3,实现对输出电压幅值及过压点/欠压点,上电/下电斜率,输出过流点等的配置;
● 设计:如图4,由客户选定主要功率器件及外围元件参数,再由Fusion Digital Power Designer 实现对数字电源环路的配置及模拟仿真;
● 监控:如图5,在线对输出电流/电压,输入电压等的实时监控;
● 状态:如图6,记录数字电源的各种故障,如过压,过流,欠压等,便于故障定位。
1.4 演示环路调试的数字电源板
本文在一款基于UCD9224 和UCD74120 的数字电源单板上实际演示环路的调试,包括对应的实测波形。该电源的系统框图如图7 所示,包含了四个功率级,采用交错并联模式输出。系统的规格为:输入电压12V,输出电压1.0V,最大输出电流为80A。
图7:数字电源系统框图
2、环路在线调试细则
借助于Fusion Digital Power Designer-online 在线工具可以完成环路的配置及仿真,然后根据实测结果再微调,最终可以得到一个理想的环路配置,整个过程中无需调试硬件。
2.1 录入功率级参数
在图3 的设计界面中有“Edit Full Power Stage in Schematic”按钮,点击后弹出界面8。在该窗口中,用户需要输入实际使用的硬件参数值,包括电感(及DCR),电容,反馈电阻等。
上述输入的这些参数用来完成整个闭环环路的模拟与仿真。因此,当录入的参数越是与实际参数一致,则仿真得到的环路参数也越是与实际相符。
录入完毕后即可保存退出。
图8:录入功率级参数
2.2 使用Auto Tune 功能
录入参数完毕后,就可以开始进行环路的补偿及配置。首先可以使用Auto Tune 功能,这也是最为简单的环路配置方式。即,点击“Compensation Mode”中的“Auto Tune”,此时图9 中的中间上部区域会显示配置后的环路参数:截止频率19.05kHz,相位余量64.32°,增益余量15.16dB。该功能使用客户所输入的硬件参数,以及对相位增益的要求,来自动配置环路补偿。使用该功能后,Fusion Digital Power Designer 会进行自动配置环路补偿,客户无法更改环路配置。
图9 右侧区域是基于当前配置的环路参数模拟动态后得到的结果。其中动态条件是可以自行输入的,最终的动态纹波峰峰值在右侧的上部区域有显示。
如果对这个环路参数及模拟得到的动态纹波峰峰值比较满意,可以保留当前参数。环路调节完毕。
图9:Auto Tune 功能
2.3 手工优化参数配置
假如使用Auto Tune 得到的参数不理想或者想进一步优化,可以点击“Compensation Mode”中的“Manual”,然后通过调节Linear Compensation 和Non-linear Compensation 得到一个更为理想的环路配置。
1. Linear Compensation 的调试方法
如图10,显示的是某次环路配置结果,没有使能Non-linear 功能。可以观察到,其截止频率为1.27K。此时测试到的动态波形(测试条件为:20A~40A~20A,斜率为2.5A/us)的峰峰值为159mV,超出了所要求的100mV指标。
还可以观察到动态波形的恢复时间也超出了要求的范围,这是因为过大的动态纹波峰峰值导致了EADC 输出饱和,其输出值被钳制在一个固定值(该值与AFE 的Gain 有关系),因此环路补偿电路只能根据该饱和值(小于实际输出值)进行补偿,由此带来了较长的恢复时间。超长的恢复时间的根因是动态纹波峰峰值过大。
图10:带宽过低造成动态响应差
下面将对上述不太理想的环路进行优化,措施包括调整低频增益,第一零点,第二零点和第二极点。
在进行手动调节前,需要选定调节方式。目前有三种方式可选:1)Real Zeros 模式;2)Complex Zeros 模式;3)PID 模式。其中Real Zeros 模式最为贴近常规模拟电源的环路调节方式,下文主要针对此种方式阐述。
1)调整低频增益
观察图10 中的波特图,功率支路的双极点位于约6KHz 处,环路的两个零点分别是4KHz(Fz1)和13.94KHz(Fz2),但是两个零点的位置都在截止频率的右侧,因此零点对截止频率的贡献较小,可以尝试增大低频增益。
K 表示低频增益。将K 值由原来的61.1dB 修改为72dB 后,截止频率变为10.41KHz,有了明显的改善,且位于两个零点之间。增益余量和相位余量亦满足环路稳定准则的要求。
图11:调整低频增益的实际效果
2)调整第一零点和第二零点
第一零点为4KHz,位于双极点的左侧。即,环路增益受到到第一零点的影响而增强后,随后会受到双极点的影响而衰弱。因此,此时右移第一零点,将会减小截止频率,相位余量也会被减小;反之,截止频率和相位余量会继续变大。例如,当将第一零点修改为5Khz 后,截止频率减小到9.29KHz,相位余量减小为89.2°。
图12:调整第一零点的实际效果
第二零点为14KHz,位于双极点的右侧,接近截止频率。因此,当左移该零点,原截止频率处的环路增益得到增强,截止频率会变大。第二零点处的相位会被提升,当截止频率变大而接近第二零点后,相位余量也会因此变大。例如,当将第二零点修改为11KHz 后,截止频率变大到9.87KHz,相位余量增大到94.68°。
图13:调整第二零点的实际效果
3)调整第二极点
观察图13 中的波特图,增益余量对应的频率为200KHz,而第一极点的位置是119.9KHz。因此,如果想进一步增大增益余量,可以左移第一极点。此时,增益达到200KHz 区域后会下降的更多,增益余量得以增大。
图14:调整第二极点的实际效果
至此,低频增益,零点和极点都有所调整。使用当前环路参数测试到的动态波形见图15,可以观察到,动态纹波的峰峰降低为90mV,已经满足指标要求。
图15:线性补偿调节及其实测波形
2、Non-linear Compensation 的使用
非线性补偿的原理是在环路补偿环节加入非线性控制,对大信号响应做进一步的控制。即,当输入到环路的误差量超出一定范围后使用更大的增益值,可以有效降低动态波形的峰峰值,且不影响常态运行时的环路标。
以图16 为例,当误差量在Limit1 和Limit2 之间时,环路增益值为1.25;当超过Limit1/2 但为超出Limit0/3时,增益值为1.75;当超出Limit0/3 后,增益值为2.25。同时,可以观察到,使能非线性补偿后环路的截止频率,增益余量和相位余量与未使用非线性补偿前是一致的。
上文提到的Limitx 中的数值针对的是EADC 的输出(为无单位的纯数值)。EADC 将参考电压和输出电压之间的差值(Vref-Vout)转化为数字化信号。因此,超出Limit2/3 的数值表示输出电压低于参考电压,也即对应于输出电流上跳的动态响应。而低于Limit1/0 的数值表示输出电压高于参考电压,也即对应于输出电流下跳的动态响应。最终,动态纹波的峰峰值降低到了74mV,较未使用非线性补偿变小了了约20%。
图16:非线性增益调节及实测波形
2.4 环路参数调试完毕的保存及生效
环路参数确定后,点击“Write to Hardware”按钮可以保存当前参数。此时,会弹出一个新的窗口,显示用户刚刚编辑的数据(Original)和实际写入到芯片的数据(New)。二者存在的轻微差异主要是由于模拟到数字转化的量化误差导致的。
图17:保存数据并生效
虽然将“New”所对应的数据写入到了芯片中。但需要注意的是,此时UCD9224 实际使用的环路参数并不是上述数据。当只有当点击“Activate CLA Bank”按钮后才会使UCD9224 使用“New”所对应的数据。
3、软启动阶段对应的环路调试
UCD92xx 的环路补偿电路对应有2 套参数,分别在输出电压软启动阶段和输出电压正常运行时使用,给应用带来了极大的灵活性。通常,软启动阶段的环路响应可以略慢于正常运行时的环路响应,防止在起机过程中出现过冲等问题。
图18 是软启动阶段的环路配置,与正常运行时的环路配置相似。需要注意的有如下几点:
1. 尽量保证零极点的位置与正常运行时环路的零极点一致;
2. 可以通过将AFE 的Gain 修改为2X 或将Non-linear 的中间Gain 改为0.75 来降低环路带宽;
图18:软启动阶段环路调节
4 参考文献
1. UCD9224 datasheet, Texas Instruments Inc., 2010
2. UCD74120 datasheet, Texas Instruments Inc., 2011
3. Using the UCD92xx Digital Point-of-Load Controller Design Guide, Texas Instruments Inc., 2011
4. Application Note:数字电源UCD92xx 输出电压波形的优化
5. Application Note:数字电源控制器UCD3138 的数字比较器与模数转换器的应用说明