《电子技术应用》
您所在的位置:首页 > 嵌入式技术 > 业界动态 > 电动汽车充电电路的设计分析—电路图天天读

电动汽车充电电路的设计分析—电路图天天读

2016-02-24

  随着现代高新技术的发展和当今世界环境、能源两大难题的日益突出,电力驱动车辆又成为汽车工业研究、开发和使用的热点。世界各国从20 世纪80年代开始,掀起了大规模的开发电动汽车的高潮。但电动汽车的市场化一直受到一些关键技术的困扰。其中,比较突出的一个问题就是确保电动汽车电池组安全、高效、用户友好、牢固、性价比高的充电技术

  1 充电技术

  电动汽车电池充电是电动汽车投入市场前,必须解决的关键技术之一。电动汽车电池充电一般采用两种基本方法:接触式充电和感应耦合式充电。

  接触式充电

  接触式充电方式采用传统的接触器,使用者把充电源接头连接到汽车上。其典型示例如图1所示。这种方式的缺陷是:导体裸露在外面,不安全。而且会因多次插拔操作,引起机械磨损,导致接触松动,不能有效传输电能。

2009711135358250.gif

  图1 接触式充电示意图

  感应耦合式充电

  感应耦合式充电方式,即充电源和汽车接受装置之间不采用直接电接触的方式,而采用由分离的高频变压器组合而成,通过感应耦合,无接触式地传输能量。采用感应耦合式充电方式,可以解决接触式充电方式的缺陷。

  图2给出电动汽车感应耦合充电系统的简化功率流图。图中,输入电网交流电经过整流后,通过高频逆变环节,经电缆传输通过感应耦合器后,传送到电动汽车输入端,再经过整流滤波环节,给电动汽车车载蓄电池充电。

2009711135359408.gif

  图2 EV感应耦合充电系统简化功率流图

  感应耦合充电方式还可进一步设计成无须人员介入的全自动充电方式。即感应耦合器的磁耦合装置原副边之间分开更大距离,充电源安装在某一固定地点,一旦汽车停靠在这一固定区域位置上,就可以无接触式地接受充电源的能量,实现感应充电,从而无须汽车用户或充电站工作人员的介入,实现了全自动充电。

  2 感应耦合充电标准—SAE J-1773

  为实现电动汽车市场化,美国汽车工程协会根据系统要求,制定了相应的标准。其中,针对电动汽车的充电器,制定了SAE J-1772和SAE J-1773两种充电标准,分别对应于接触式充电方式和感应耦合充电方式。电动汽车充电系统制造商在设计研制及生产电动汽车充电器中,必须符合这些标准。

  SAE J-1773标准给出了对美国境内电动汽车感应充电耦合器最小实际尺寸及电气性能的要求。

  充电耦合器由两部分组成:耦合器和汽车插座。其组合相当于工作在80~300kHz频率之间的原副边分离的变压器。

  对于感应耦合式电动汽车充电,SAEJ-1773推荐采用三种充电方式,如表1所示。对于不同的充电方式,充电器的设计也会相应地不同。其中,最常用的方式是家用充电方式,充电器功率为6.6kW,更高功率级的充电器一般用于充电站等场合。

  根据SAE J-1773标准,感应耦合器可以用图3所示的等效电路模型来表示。

2009711135359776.gif

  图3 感应耦合器等效电路模型

  变压器原副边分离,具有较大的气隙,属于松耦合磁件,磁化电感相对较小,在设计变换器时,必须充分考虑这一较小磁化电感对电路设计的影响。

  在设计中仍须考虑功率传输电缆。虽然SAE J-1773标准中没有列入这一项,但在实际设计中必须考虑功率传输电缆的体积、重量和等效电路。由于传输电缆的尺寸主要与传输电流的等级有关,因而,减小充电电流可以相应地减小电缆尺寸。为了使电缆功率损耗最小,可以采用同轴电缆,在工作频率段进行优化。此外,电缆会引入附加阻抗,增大变压器的等效漏感,在功率级的设计中,必须考虑其影响。对于5m长的同轴电缆,典型的电阻和电感值为:Rcable=30mΩ;Lcable=0.5~1μH。

  3 对感应耦合充电变换器的要求

  根据SAE J-1773标准给出的感应耦合器等效电路,连接电缆和电池负载的特性,可以得出感应耦合充电变换器应当满足以下设计标准。

  电流源高频链

  感应耦合充电变换器的副边滤波电路安装在电动汽车上,因而,滤波环节采用容性滤波电路将简化车载电路,从而减轻整个电动汽车的重量。对于容性滤波环节,变换器应当为高频电流源特性。此外,这种电流源型电路对变换器工作频率变化和功率等级变化的敏感程度相对较小,因而,比较容易同时考虑三种充电模式进行电路设计。而且,副边采用容性滤波电路,副边二极管无须采用过压箝位措施。

  主开关器件的软开关

  感应耦合充电变换器的高频化可以减小感应耦合器及车载滤波元件的体积重量,实现电源系统的小型化。但随着频率的不断增高,采用硬开关工作方式的变换器,其开关损耗将大大增高,降低了变换器效率。因而,为了实现更高频率、更高功率级的充电,必须保证主开关器件的软开关,减小开关损耗。

  恒频或窄频率变化范围工作

  感应耦合充电变换器工作于恒频或窄频率变化范围有利于磁性元件及滤波电容的优化设计,同时,必须避免工作在无线电带宽,严格控制这个区域的电磁干扰。对于变频工作,轻载对应高频工作,重载对应低频工作,有利于不同负载情况下的效率一致。

  输入单位功率因数

  感应耦合充电变换器工作在高频,会对电网造成谐波污染。感应充电技术要得到公众认可,获得广泛使用,必须采取有效措施,如功率因数校正或无功补偿等技术,限制电动汽车感应耦合充电变换器进入电网的总谐波量。就目前而言,充电变换器必须满足IEEE519?1992标准或类似的标准。要满足这些标准,加大了感应耦合充电变换器输入部分及整机的复杂程度,增加了成本。而且,根据不同充电等级要求,感应耦合充电变换器可以选择两级结构(前级为PFC+后级为充电器电路)或PFC功能与充电功能一体化的单级电路。


本站内容除特别声明的原创文章之外,转载内容只为传递更多信息,并不代表本网站赞同其观点。转载的所有的文章、图片、音/视频文件等资料的版权归版权所有权人所有。本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如涉及作品内容、版权和其它问题,请及时通过电子邮件或电话通知我们,以便迅速采取适当措施,避免给双方造成不必要的经济损失。联系电话:010-82306118;邮箱:aet@chinaaet.com。