人工智能底层硬件里程碑 首个人造神经元面世
2016-08-08
对于不少该领域的科学家而言,人工智能的终极目标之一就是用机器实现人脑的全部功能,而作为人脑的最小细胞单位——神经元,可能会是一个最好的入手点。
IBM官方宣布了他们的最新成果——首个人造神经元,可用于制造高密度、低功耗的认知学习芯片。
IBM苏黎世研究中心制成了世界上第一个人造纳米尺度随机相变神经元。IBM已经构建了由500个该神经元组成的阵列,并让该阵列以模拟人类大脑的工作方式进行信号处理。
该技术突破具有重要意义,因为相变神经元具有传统材料制成的神经元无法匹敌的特性——其尺寸能小到纳米量级。此外,它的信号传输速度很快,功耗很低。更重要的是,相变神经元是随机的,这意味着在相同的输入信号下,多个相变神经元的输出会有轻微的不同,而这正是生物神经元的特性。
IBM相变神经元由输入端(类似生物神经元的树突)、神经薄膜(类似生物神经元的双分子层)、信号发生器(类似生物神经元的神经细胞主体)和输出端(类似生物神经元的轴突)组成。信号发生器和输入端之间还有反馈回路以增强某些类型的输入信号。
神经薄膜是整个神经元的关键。在生物神经细胞中,起神经薄膜作用的是一层液态薄膜,它的物理机理类似于电阻和电容:它阻止电流直接通过,但同时又在吸收能量。当能量吸收到一定程度,它就向外发射自己产生的信号。这信号沿着轴突传导,被其他神经元接收。然后再重复这一过程。
在IBM制造的神经元中,液态薄膜被一小片神经薄膜取代。神经薄膜是由锗锑碲复合材料(也称GST材料)制成的,该材料也是可重写蓝光光盘的主要功能材料。锗锑碲复合材料是一种相变材料,即它可以以两种状态存在:晶体态和无定形态。通过激光或电流提供能量,两种状态之间可以互相转变。在不同状态下,相变材料的物理特性截然不同:锗锑碲复合材料在无定形态下不导电,而在晶体态下导电。
在人工神经元中,锗锑碲薄膜起初是无定形态的。随着信号的到达,薄膜逐渐变成结晶态,即逐渐变得导电。最终,电流通过薄膜,制造一个信号,并通过该神经元的输出端发射出去。在一定的时间后,锗锑碲薄膜恢复为无定形态。这个过程周而复始。
生物神经元与人造神经元对比图,
由于生物体内各种噪声的存在,生物神经元是随机的(Stochastic)。IBM研究人员表示,人工神经元同样表现出了随机特性,因为神经元的薄膜在每次复位后,其状态有轻微的不同,因此随后的晶态化过程略有不同。因此,科学家无法确切地知道每次人工神经元会发射什么信号。
那么人工神经元到底有何意义?
首先,人工神经元采用了成熟的材料,历经几十亿次工作而不损坏(寿命长),体积极小(有报道说是90纳米,但从下图中看应该在300纳米左右,而论文中表示未来有望达到14纳米)。因此,这是一种性能非常棒的器件。
人工神经元网络。图中的银色方块是放大后的相变神经元,该神经元网络还没有配备工业标准的输入输出接口。图片来源:IBM
其次,人工神经元跟生物神经元的工作方式非常类似。当大批人工神经元组成并行计算机后,它也许可以和人类一样进行决策和处理感官信息。IBM表示,他们的人工神经元技术和目前发展中的另外一种人工神经元器件——忆阻器互为补充。
目前,IBM制造了10乘10的神经元阵列,将5个小阵列组合成一个500神经元的大阵列,该阵列可以用类似人类大脑的工作方式进行信号处理。事实上,人工神经元已经表现出和人类神经元一样的“集体编码”特性。此外,它的信号处理能力已经超过了奈奎斯特-香农采样定理规定的极限。
编者注:集体编码:每个神经元有2种状态,可以表示1比特信息,那么N个神经元就可以表示2N比特信息。神经元数量足够多时,能表示的信息量将极其惊人。
IBM研究人员计划构建包含几千个相变神经元的单一芯片,并编写能充分利用相变神经元芯片随机特性的软件。