文献标识码: A
DOI:10.16157/j.issn.0258-7998.181410
中文引用格式: 孟嘉慧,赵旦峰,张良. 基于迭代编码算法的混合构造算法[J].电子技术应用,2018,44(9):12-16.
英文引用格式: Meng Jiahui,Zhao Danfeng,Zhang Liang. Hybrid of check matrix construction algorithm based on iteration coding algorithm[J]. Application of Electronic Technique,2018,44(9):12-16.
0 引言
随着移动互联网和物联网的不断发展,第五代移动通信(Fifth-Generation Mobile Communication Technology,5G)面临移动通信爆发式增长[1-2]。5G技术不仅需要大幅度提升频谱利用效率,而且需要具备支持海量设备连接的能力[3-6]。由于低密度奇偶校验(Low Density Parity Check,LDPC)码具有高可靠性、快速收敛性及较强抗突发错误能力[7-8],可以提高系统有效性[9-10],使得3GPP RAN1会议在2016年确定在5G移动通信中使用LDPC码作为移动带宽eMBB业务数据的长码块编码方案。
本文对2004年由王鹏提出的LDPC码迭代编码算法[11]进行改进,转变为适用于多元LDPC码的编码算法,称为多元迭代编码算法;2005年,Hu Xiaoyu提出了渐进边增长(Progressive Edge Growth,PEG)构造算法[12],该算法译码性能好,但编码复杂度较高。本文针对PEG算法具有高编码复杂度这一缺点,提出改进的PEG算法,即irPEG算法;结构化构造算法,即QC-LDPC构造算法[13],该算法复杂,译码性能差于随机构造算法,但复杂度大幅度下降,硬件实现性强。本文提出一种改进的QC-LDPC算法,使校验矩阵具有下三角结构,降低复杂度,加快收敛速度,构造出无短环的校验矩阵。然后,从编码复杂度和纠错性能两方面考虑,基于多元迭代编码算法,提出混合构造算法,即HC构造算法,将随机构造和结构化构造算法结合,irPEG算法构造基矩阵,改进的QC-LDPC算法生成循环移位矩阵和有限域系数矩阵,消除短环影响,设置校验矩阵个数,从中选取最优校验矩阵。该算法既具有随机构造的随机性,又保持结构化构造的低复杂度,降低结构化构造对误码性能带来的损失,是比较折中的算法。
1 多元迭代编码算法
在图1中对角线上的元素全部为GF(q)域上的非“0”元素,并且剩余的非“0”元素全部对应于对角线左边。若构造出的多元LDPC校验矩阵具有图1的结构,则在编码过程中可直接采用迭代编码算法编码。
其中,l∈[0,n-k-1],hi,j表示校验矩阵H中第i行j列上的元素,且k=n-m。由式(1)知,多元迭代编码算法过程为利用校验矩阵H中各行约束关系,采用后项迭代算法,逐次计算每个校验位符号值。
对迭代编码算法改进,将二元迭代编码时采用的与(AND)和异或(XOR)运算,改进为GF(q)域上乘法和加法运算。同时多元迭代编码算法的运算过程中引入了GF(q)域上除法运算。对运算量简化,将对角线上元素设置为1,式(1)改为式(2)。
2 混合构造算法
2.1 irPEG构造算法
针对PEG算法具有较高编码复杂度的缺点,提出一种具有下三角结构非规则的PEG算法,即irPEG算法。该算法从编码方案、构造校验矩阵方面改进,以降低编码复杂度,提升纠错性能。具体步骤如下:
(1)确定基矩阵中各参数
行列数、变量节点度分布序列,并且初始化基矩阵的信息,包括与变量节点相互连接的校验节点的集合以及它的补集。
(2)构造基矩阵对角线右侧下三角部分
首先采用后项迭代算法从最后一列变量节点构造,根据变量节点度分布[14]向前连接校验节点。每列中第一个非“0”元素位置必须与对角线上校验节点连接,其余非“0”元素需添加在对角线左侧。寻找所有与该变量节点连接的校验节点集合,从中筛选度数最小的校验节点集合。若该集合含有多元素,则从中删除构成短环的校验节点,随机连接剩余某校验节点,若只有一个元素,则直接连接该校验节点。
(3)构造基矩阵的前n-m列
从第n-m个变量节点依次向前构造。根据初始化变量节点度分布序列选择度数最小的校验节点,保证每行行重相比于平均行重相差不大。删除构成短环的校验节点后,从剩余校验节点中随机连接。
由于构造出的矩阵具有下三角结构,构造时在满足式(4)度分布的基础上,将矩阵最后一列列重设置为1,校验部分对角线上元素均为1,下三角部分均为0元素。由此可见,可以利用式(2)直接采用后多元迭代编码算法进行编码。
2.2 混合构造算法
虽然irPEG算法结合多元迭代编码算法可大大降低编码复杂度,但更适用于中短码硬件实现,对于长码来说,硬件实现复杂度依然较高。此时牺牲多元LDPC码一定纠错性能,在改进的QC-LDPC算法的基础上使其具有下三角结构,同时采用irPEG算法构造基矩阵WJ×L,提高多元LDPC码随机性,降低结构化构造对纠错性能带来的损失。将改进的QC-LDPC构造算法与irPEG算法结合,称为混合构造算法,即HC构造算法。HC构造算法步骤如下:
(1)irPEG算法构造基矩阵WJ×L。
给定多元LDPC码度分布,根据irPEG算法构造出具有下三角结构二元基矩阵,大小为J×L。
(2)确定有限域元素系数矩阵GcJ×L,根据基矩阵非“0”元素位置,在(0,q-1)间随机选择gcj,l值。
(3)基矩阵WJ×L确定循环移位系数矩阵SJ×L。
将循环移位系数矩阵SJ×L对角线上系数设为0,随机选择移位系数sj,l,通过WJ×L结合避免长度为2i的充分必要条件,如式(5)所示,确定移位系数矩阵SJ×L中移位系数sj,l。
其中,0表示p×p维的零矩阵,P表示p×p维的单位阵,码长为n=p×L,码率为r=(1-J/L)。HC构造算法的流程图如图2所示。
3 编码复杂度分析
PEG算法、irPEG算法、HC算法的编码复杂度如表1所示。其中,w是生成矩阵的平均列重,n是码长,k是信息位长。
在存储复杂度方面,HC算法构造的LDPC码存储矩阵时存储一个p×p维目标方阵P、一个J×L维多元系数矩阵GcJ×L及一个J×L循环移位系数矩阵SJ×L。irPEG算法构造同样大小校验矩阵,存储一个p×J×p×L大小的校验矩阵。可见,HC算法与irPEG算法相比具有更简单的矩阵存储结构。
在编码复杂度方面,PEG算法采用高斯消去编码算法,irPEG算法和HC算法采用多元迭代编码算法。高斯消去编码复杂度包含预处理,运算复杂度为o(n3),编码复杂度为o(n2),整个编码过程需wn次乘法,(w-1)n次加法。多元迭代编码算法整个编码过程用到(w-1)(n-k)次加法,w(n-k)次乘法。
irPEG算法和HC算法能直接构造出下三角校验矩阵,避免了校验矩阵预处理的同时保证了校验矩阵的稀疏性。因此,w相对于n可以看成非常小的常数,实现多元LDPC码的线性复杂度编码,与传统的构造算法相比,大幅度地降低了编码的复杂度。
4 仿真结果及分析
仿真参数设置:度分布服从式(4)的多元LDPC码,矩阵通过PEG算法和irPEG算法生成,在十六进制1/2码率(Code1)和3/4码率(Code2)下进行仿真,Code1时,信息位长为512 bit;Code2时,信息位长为176 bit。译码采用Mixed Log-FFT-BP译码算法[15],迭代次数25,BPSK调制,AWGN信道。
图3和图4分别为Code1和Code2时不同码率下的纠错性能。由图3和图4可知,irPEG算法与PEG算法误码率相比,性能相差不大,表明irPEG算法构造具有下三角结构的多元LDPC码在大幅度降低硬件实现复杂度的同时,具有较强的纠错能力。
对Code1和Code2译码时间进行测量,保持仿真环境一致性,如表2和表3所示。由表2可知,irPEG算法时间明显比PEG算法少,当误比特数较少时,时间节省量少于50%,随着误比特数增加,时间节省量稳定在50%,因此,irPEG算法耗费时间仅为PEG算法50%。Code2在信噪比为4 dB时的仿真测试结果如表3所示,同样表明译码所需时间减少一半。
参数设置如下:码率1/2、2/3、3/4、4/5、6/7,矩阵通过PEG和HC生成,十六进制(Code3)下仿真,1/2码率时,基矩阵16列,目标矩阵P为24×24单位阵;2/3码率时,基矩阵18列,P为16×16单位阵;3/4码率时,基矩阵16列,P为16×16单位阵;4/5码率时,基矩阵20列,P为12×12单位阵;6/7码率时,基矩阵14列,P为16×16单位阵,固定信息位长768 bit。图5为Code3情况时,PEG算法与HC算法在不同码率下的误比特率性能。
由图5可知,HC算法与PEG算法构造的多元LDPC码在低信噪比时没有明显差别;在高信噪比下HC算法性能略差于PEG算法构造的多元LDPC码,因此两种算法具有一致的编码增益。
5 结论
本文提出基于多元LDPC码迭代编码算法的混合校验矩阵构造算法,首先对迭代编码算法改进,使其适用于多元LDPC码;然后采用后项迭代法使PEG算法具有下三角结构,并将其作为混合构造算法基矩阵;最后采用改进后具有下三角的QC-LDPC码算法生成循环移位矩阵和有限域系数矩阵,设置校验矩阵的个数,从中选取最优的校验矩阵,该校验矩阵消除了短环影响,形成混合构造算法。仿真结果表明,本文提出的算法可以更好地适用于5G移动通信系统且满足译码算法的需求,对于高速通信设备来说是一种很好的候选校验矩阵构造算法。
参考文献
[1] TANG B,YANG S H.An LDPC approach for chunked network codes[J].IEEE-ACM Transactions on Networking,2018,26(1):605-617.
[2] MENG J H,ZHAO D F,TIAN H,et al.Sum of the Magnitude for hard decision decoding algorithm based on loop update detection[J].Sensors,2018,18(1):236.
[3] ZHANG C,HUANG Y H,SHEIKH F.Advanced baseband processing algorithm[J].Circuits, and Implementations for 5G Communication.IEEE Journal on Emerging and Selected Topics in Circuits and Systems,2017,7(4):477-490.
[4] DJORDJEVIC I B.Multidimensional OAM-Based secure high-speed wireless communications[J].IEEE Access,2017,5(4):16416-16428.
[5] MALANDRINO F,CHIASSERINI C F,KIRKPATRICK C.Cellular network traces towards 5G:using,analysis and generation[J].IEEE Transactions on Mobile Computing,2018,17(3):529-542.
[6] SOTELO M,MARCO A,MAESTRE V,et al.Reasoning and knowledge acquisition framework for 5G network analytics[J].Sensors,2017,17(10):2405.
[7] YU Y,CHEN W.Design of low complexity non-binary LDPC codes with an approximated performance-complexity tradeoff[J].IEEE Communications Letters,2012,16(4):514-517.
[8] SONG L Y,HUANG Q,WANG Z L.Two enhanced reliability-based decoding algorithm for nonbinary LDPC codes[J].IEEE Transactions on Communications,2016,64(2):479-489.
[9] ZHAO S C,MA X.Construction of high-performance array-based non-binary LDPC codes with moderate rates[J].IEEE Communications Letters,2016,20(1):13-16.
[10] XIA T,WU H C.Blind identification of nonbianry LDPC codes using average LLR of syndrome a posteriori proba-bility[J].IEEE Communications Letters,2013,17(7):1301-1304.
[11] 王鹏,王新梅.LDPC码的快速编码研究[J].西安电子科技大学学报,2004,6(31):934-938.
[12] Hu Xiaoyu,EVANGELOS E,DIETER M A.Progressive edge growth tanner graphs[J].IEEE Transactions on Information Theory,2005,51(1):995-1001.
[13] DRAGOI V,KALACHI H T.Cryptanalysis of a public key encryption scheme based on QC-LDPC and QC-MDPC codes[J].IEEE Transactions on Information Theory,2018,22(2):264-267.
[14] TONG N N.Research of encode and decode algorithm optimization and application for non-binary LDPC codes[D].Harbi:Harbin Engineering University,2014.
[15] SONG H,CRUZ J R.Reduced-complexity decoding of Qary LDPC codes for magnetic recording[J].IEEE Transactions on Magnetics,2003,39(2):1081-1087.
作者信息:
孟嘉慧,赵旦峰,张 良
(哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨150001)