《电子技术应用》
您所在的位置:首页 > 可编程逻辑 > 业界动态 > GSA Memory+ 会议札记

GSA Memory+ 会议札记

2019-07-24
关键词: Memory 计算 CPUGPU

  何能够让计算Memory水乳交融,这个看起来的确是一个一石二鸟的想法。毕竟,作为CPU/GPU以及memory,从本质上大家都是门电路,没理由不在一起。在这里,就需要认真地再复习一下memory的类别了。

微信图片_20190724121150.jpg

  在易失的存储器中,主要就是SRAM和DRAM。两者都历史相对比较悠久的器件。而且,在大部分的心目中DRAM就是memory的缺省候选。对于DRAM来讲,有一篇神文值得安利。《What Every Programmer Should Know About Memory》[1],其中基本上介绍了程序员需要关心的Memory相关的信息,特别集中在DRAM上。当然,如果要写What Every Designer Should Know About Memory, 估计要关注SRAM了。

  DRAM和SRAM的主要区别如下:

 微信图片_20190724121154.jpg

  可以看出,SRAM相对于DRAM,需要更多的晶体管来实现。SRAM的好处是:

  1. 不需要Refesh的电路,每个Cell的内容在写入之后,会一直保存到掉电为止。而DRAM则需要在10-100ms的时间级别进行Refresh。

  2. SRAM的抗干扰能力要比DRAM强,这个也是那些晶体管的主要用处。

  这里面没有提另一个关键的信息,就是功耗。对于一般的情况下,因为DRAM需要周期性地refresh,因此功耗比较大。但是SRAM自身功耗和主频的关系比较大,如果整个系统的时钟很高的话,SRAM的功耗可能会超过DRAM。

  对于Memory来讲,定义它的主要性质的基本因素就是Cell,每一个Cell在RAM中代表一个Bit,但是更重要的是memory的array,任何的memory都不是单个cell的操作,而是需要array level的操作。


微信图片_20190724121206.jpg

  这个是memory cell 和memory array的示意图,可以看出,wordline 和bitline 是memory cell的基本概念,wordline 也是地址线,性质和enable类似,主要是来决定memory array中的一行cell可以被读取或者写入。当然,wordline的信息对应的地址是唯一的,而且在任意时间,只有一个workline处于High,也就是enable。

  Bitline就是memeory的真正位宽了,因为种种原因,内存的cell的word line 和bitline不没有做成完全的nxn的array,代表的地址的word line 总是要比bitline大很多,因此有了RAS和CAS的概念,先选ROW,再下一个周期选COL。对于Bitline,和目前的DDR相关的BANK的概念就是扩展Bitline常用的方式。

微信图片_20190724121258.jpg

  到这里,大家算是对于DRAM的memory array有了了解。切入正题,段博士的老板,也就是谢源教授在一个方向上的试探。[2]

微信图片_20190724121252.jpg

  有兴趣的自然自己可以去看原论文,这里只是贴上原文的总结。“

  We compare four different DRISA designs and conclude that 1T1C -nor/mixed are the best choices. We then present a case study where

  we evaluate CNN applications on DRISA. With the benefit of in-situ computing, DRISA shows 8.8X speedup and 1.2Xbetter energy

  effciency when compared with ASICs, and 7.7Xspeedup and 15Xbetter energy effciency than GPUs”。

  个人认识是一个试探的原因有两个方面:

  因为DRAM的商业壁垒太高,我们有基于Xilinx的FPGA做NVDIMM的客户,他们的商业模式都是自己做控制器和系统的开发,最后交DRAM厂家上产线生产组装。因为DRAM的高度垄断,因为任何基于DRAM方向的创新都需要他们的支持,目前来看,这些巨头对于这个方向并没有兴趣。而且其中Micron在2015-2016年在异构计算上的很多投资基本上都失败了。谢老师的合作伙伴Samsung电子,估计也是玩票性质。

  和之前讲的计算和存储结合不同,这种方式需要对memory array做非常细致的拆解,而且处处定制。这个和GPU或者ASIC方案对比,实用性太差了。而且,相对与GPU 15X的性能功耗比,在2019大放异彩的以色列ASIC面前,基本上可以或略不济。

  我曾在2017年的CNCC的会上,问谢老师,他的HBM在从提出到商业使用,基本上只花了不到10年的时间,这个真的很NB了。对于他的in-suite accelerator,他认为要花多久?谢老师很有风度的回避了这个问题。[3]

  于是,这个革命的重任再次落到了NVM身上,诞生于1985年的NOR和NAND先完成了存储行业的革命,他们的近亲们现在在解决了random access的同时,希望利用array来解决计算问题。

  目前来看,大家认为通过对于未来的可以支持Random access, byte address的新型非易失存储在架构上的优化来做到一石二鸟充满信心。段博士引用了几篇最近的论文,基本上都是基于MRAM[4]和ReRAM[5]的。MRAM在2018年的FMS上有几个相关的专题,但是从目前来看,MRAM的制程不能随工艺缩小,人家Samsung都在用1Y做DRAM了,他还在40nm。而ReRAM曾经是HP和Sandisk 的深度合作的基础,但是现在也是物是人非。

  虽然工业界对于NVM和ML结合的热潮有所下降,但是目前的学术届还是非常积极的。有很多不错的综述文章让大家上手。因为本作者才疏学浅,下一个关于ReRAM和MRAM相结合的文章目前没有时间表。作为补偿,给大家一个彩蛋,上上周在硅谷的中美半导体"Breaking the memory wall" [6],有兴趣的可以看看。


本站内容除特别声明的原创文章之外,转载内容只为传递更多信息,并不代表本网站赞同其观点。转载的所有的文章、图片、音/视频文件等资料的版权归版权所有权人所有。本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如涉及作品内容、版权和其它问题,请及时通过电子邮件或电话通知我们,以便迅速采取适当措施,避免给双方造成不必要的经济损失。联系电话:010-82306118;邮箱:aet@chinaaet.com。