5G下边云协同的V2X技术方案与研究
2020年电子技术应用第12期
熊小敏,沈 云,丁 鹏,薛裕颖
中国电信股份有限公司研究院,北京102209
摘要: 对自动驾驶业务的发展趋势、单车智能的局限性、车路协同的优势进行了介绍;同时,重点阐述了车路协同技术体系架构及系统要求、基于“端边云”的多级多源数据融合感知分析架构以及基于路侧+边缘云+区域/中心云三级/四级边缘部署实现路径;最后给出了基于边云协同多级多源感知融合分析能力组网方案,并对其具体功能、时延等要求进行了详细论述。该研究对车路协同项目规划和设计人员有一定参考价值。
中图分类号: TN919.5;U495;TP39
文献标识码: A
DOI:10.16157/j.issn.0258-7998.201069
中文引用格式: 熊小敏,沈云,丁鹏,等. 5G下边云协同的V2X技术方案与研究[J].电子技术应用,2020,46(12):19-25,31.
英文引用格式: Xiong Xiaomin,Shen Yun,Ding Peng,et al. V2X technology scheme and research of edge cloud collaboration under 5G[J]. Application of Electronic Technique,2020,46(12):19-25,31.
文献标识码: A
DOI:10.16157/j.issn.0258-7998.201069
中文引用格式: 熊小敏,沈云,丁鹏,等. 5G下边云协同的V2X技术方案与研究[J].电子技术应用,2020,46(12):19-25,31.
英文引用格式: Xiong Xiaomin,Shen Yun,Ding Peng,et al. V2X technology scheme and research of edge cloud collaboration under 5G[J]. Application of Electronic Technique,2020,46(12):19-25,31.
V2X technology scheme and research of edge cloud collaboration under 5G
Xiong Xiaomin,Shen Yun,Ding Peng,Xue Yuying
Research Institute of China Telecom Corporation Limited,Beijing 102209,China
Abstract: In This paper, the development trend of automatic driving business, the limitations of single vehicle intelligence, and the advantages of vehicle road coordination are introduced. At the same time, it focuses on the technical architecture and system requirements of vehicle road collaboration, the multi-level multi-source data fusion perception analysis architecture based on "end edge cloud", and the implementation path of three-level/four-level edge deployment based on roadside+edge cloud + regional/central cloud. The networking scheme of multi-level multi-source sensing fusion analysis capability based on edge cloud is then proposed, and its specific functions and delay requirements are discussed in detail. This research is of some reference value to the project planner and designer of vehicle road collaboration.
Key words : edge cloud collaboration;vehicle-road collaboration;V2X;edge computing;MEC
0 引言
车路协同典型应用场景可分为安全、效率、定位、视频、信息服务五大类[1],每类里面有多个典型的应用。当前各功能场景多以视频为核心的多源数据融合通过信号处理、视频识别、激光雷达信号识别、信息综合等应用功能对交叉路口周边内的车辆、行人等位置、速度、方向角度等进行分析和预测,但不同场景下信息融合对算力、时延、安全、管控等要求各异,且传统交通信息服务厂商多在路边部署工控机方式来做融合处理,无法满足全场景需求。随着5G、边缘计算的部署发展,车路边云协同融合成为可能,能更好地满足各场景对算力、存储、时延、安全等需求。本文重点讨论5G下边云协同的V2X技术实现方案等。
本文详细内容请下载:http://www.chinaaet.com/resource/share/2000003077
作者信息:
熊小敏,沈 云,丁 鹏,薛裕颖
(中国电信股份有限公司研究院,北京102209)
此内容为AET网站原创,未经授权禁止转载。