《电子技术应用》
您所在的位置:首页 > 其他 > 设计应用 > 基于熵率聚类的超像素机器视觉与缺陷检测算法
基于熵率聚类的超像素机器视觉与缺陷检测算法
信息技术与网络安全
李 锋
(广东交通职业技术学院,广东 广州510650)
摘要: 在智能制造中,传统成像技术已经满足不了高精度工业需求。提出了结合熵率聚类的目标分割算法,并且基于超像素的邻边集,建立熵率和平衡项的目标函数,最后通过贪婪启发算法优化并求解该目标函数,得到最优的超像素集合。并设计了基于高斯函数衡量相邻像素的相似性实验,设定相关参数,进行工业制造实际流程检测。最终实验结果表明,所提算法有较好的检测识别效果,在轮廓及内部条纹识别上效果明显,整体识别效果良好,适用于工业制造领域。
中图分类号: TP393
文献标识码: A
DOI: 10.19358/j.issn.2096-5133.2021.02.012
引用格式: 李锋. 基于熵率聚类的超像素机器视觉与缺陷检测算法[J].信息技术与网络安全,2021,40(2):70-73.
Super pixel machine vision and defect detection algorithm based on entropy rate clustering
Li Feng
(Guangdong Communication Polytechnic,Guangzhou 510650,China)
Abstract: In intelligent manufacturing, traditional imaging technology can no longer meet the needs of high-precision industry. In this paper, a target segmentation algorithm combining entropy rate clustering was proposed, and the objective function of entropy rate and equilibrium term was established based on the adjacent edge set of hyper pixel. Finally, the optimal hyper pixel set was obtained by optimizing and solving the objective function through greedy heuristic algorithm. A similarity experiment based on Gaussian function was designed to measure the similarity of adjacent pixels, and the relevant parameters were set to test the actual process of industrial manufacturing. The final experimental result shows that the algorithm has a good detection and recognition effect, is obvious in contour and internal fringe recognition, and the overall result is good, which is applicable to the field of industrial manufacturing.
Key words : machine vision;entropy clustering;super pixel;greedy heuristic algorithm

0 引言

         随着智能制造工艺精度的提高,高精度和快速检测成为目前亟待解决的问题。机器视觉与图像识别作为非接触式检测方式,具有检测速度快、精度高的特点,能很好地解决智能制造流水线中的瓶颈,并逐步替代传统人工检测方法。

        工业检测对表面缺陷检测要求更严格,传统表面缺陷成像方法,包括线扫描、结构光、面阵相机等已经不能满足精度要求,基于超像素检测算法由此诞生。表面缺陷检测问题包括图像分类和图像分割两大部分,通过采集大量缺陷与合格产品图像,对比分析图像中缺陷特征,设计相应缺陷检测算法。




本文详细内容请下载:http://www.chinaaet.com/resource/share/2000003382




作者信息:

李  锋

(广东交通职业技术学院,广东 广州510650)


此内容为AET网站原创,未经授权禁止转载。