客户侧窃电态势感知及智能预警关键技术的研究
2021年电子技术应用第12期
陈文瑛1,龙 跃1,傅 宏2,杨芾藜2,周 川2
1.国网重庆市电力公司,重庆400010;2.国网重庆市电力公司营销服务中心,重庆400010
摘要: 客户侧窃电行为不仅造成电能资源大量流失,同时造成线路负荷过载引发火灾等重大安全事故。针对当前客户侧窃电行为的多样性与隐蔽性特征,以约束客户侧窃电行为为目的,设计了客户侧窃电态势感知及智能预警关键技术。考虑客户侧窃电行为的多样性与隐蔽性特性,选取额定电压偏离度、电压不平衡率与电流不平衡率等6个客户侧窃电态势感知指标,利用RBF神经网络构建客户侧窃电态势感知模型,将所选取的6个指标与相关数据作为模型输入,通过动态K均值聚类算法优化模型,模型输出结果即为客户侧窃电态势感知结果。基于感知结果,通过声光报警装置与智能设备实现智能预警,实验结果显示,该技术能够有效抑制客户侧窃电行为。
中图分类号: TN06;TM711
文献标识码: A
DOI:10.16157/j.issn.0258-7998.211614
中文引用格式: 陈文瑛,龙跃,傅宏,等. 客户侧窃电态势感知及智能预警关键技术的研究[J].电子技术应用,2021,47(12):69-73.
英文引用格式: Chen Wenying,Long Yue,Fu Hong,et al. Research on key technologies of situation awareness and intelligent early warning of electricity theft on customer side[J]. Application of Electronic Technique,2021,47(12):69-73.
文献标识码: A
DOI:10.16157/j.issn.0258-7998.211614
中文引用格式: 陈文瑛,龙跃,傅宏,等. 客户侧窃电态势感知及智能预警关键技术的研究[J].电子技术应用,2021,47(12):69-73.
英文引用格式: Chen Wenying,Long Yue,Fu Hong,et al. Research on key technologies of situation awareness and intelligent early warning of electricity theft on customer side[J]. Application of Electronic Technique,2021,47(12):69-73.
Research on key technologies of situation awareness and intelligent early warning of electricity theft on customer side
Chen Wenying1,Long Yue1,Fu Hong2,Yang Fuli2,Zhou Chuan2
1.State Grid Chongqing Electric Power Company,Chongqing 400010,China; 2.State Grid Chongqing Electric Power Company Marketing Service Center,Chongqing 400010,China
Abstract: The customer side electricity stealing behavior not only causes the massive loss of power resources, but also causes the overload of line load, leading to fire and other major safety accidents. Aiming at the diversity and concealment characteristics of the current electricity stealing behavior in the side toilets, the key technologies of situation awareness and intelligent early warning of electricity stealing on the customer side are studied for the purpose of restraining the electricity stealing behavior on the customer side. Considering the diversity and concealment of customer side power stealing behavior, six customer side power stealing situation awareness indicators are selected, including rated voltage deviation, voltage imbalance rate and current imbalance rate,etc. The RBF neural network is used to build the customer side power stealing situation awareness model. The selected six indicators and related data are used as the model inputs, and the dynamic K-means clustering algorithm is used to optimize the model. The output of the model is the customer side power stealing situation awareness result. Based on the sensing results, intelligent early warning is realized by sound light alarm device and intelligent device. The experimental results show that the technology can effectively suppress the customer side electricity stealing behavior.
Key words : customer side;electricity theft;situation awareness;intelligent early warning;perception index
0 引言
作为一种重要的能源,电能既普遍应用于人们日常生活与工作中,又对社会经济发展与国防安全产生直接影响[1]。在科技飞速发展与能源格局改变的大环境下,提升能源利用率与电能传输的安全性、可靠性是当前电力行业关注的重点目标[2]。电能的损失不仅是由于电网线路内的电阻与设备转换造成的,客户侧窃电同样是电能损失的主要途径[3]。现实生活中,客户侧端用电设备的显著提升令电能的消耗也显著提升,部分客户为“节约成本”纷纷利用不同方式实施窃电行为,造成电能资源大量流失,严重制约了我国电力产业发展的稳定性[4]。同时,客户侧为实施窃电行为,私自改造电路,令电网内产生严重线路负荷过载的问题,这些问题极易导致火灾等重大安全事故[5]。针对当前具有多样性与隐蔽性特性的窃电方法[6],研究一种有效的客户侧窃电态势感知及智能预警关键技术具有重要意义。
本文详细内容请下载:http://www.chinaaet.com/resource/share/2000003874。
作者信息:
陈文瑛1,龙 跃1,傅 宏2,杨芾藜2,周 川2
(1.国网重庆市电力公司,重庆400010;2.国网重庆市电力公司营销服务中心,重庆400010)
此内容为AET网站原创,未经授权禁止转载。