《电子技术应用》
您所在的位置:首页 > 模拟设计 > 解决方案 > 如何使用LTspice对复杂电路的统计容差分析进行建模

如何使用LTspice对复杂电路的统计容差分析进行建模

2022-03-09
作者:ADI公司现场应用工程师 Steve Knudtsen
来源:ADI公司

摘要

LTspice®可用于对复杂电路进行统计容差分析。本文介绍在LTspice中使用蒙特卡罗和高斯分布进行容差分析和最差情况分析的方法。为了证实该方法的有效性,我们在LTspice中对电压调节示例电路进行建模,通过内部基准电压和反馈电阻演示蒙特卡罗和高斯分布技术。然后,将得出的仿真结果与最差情况分析仿真结果进行比较。其中包括4个附录。附录A提供了有关微调基准电压源分布的见解。附录B提供了LTspice中的高斯分布分析。附录C提供了LTspice定义的蒙特卡罗分布的图形视图。附录D提供关于编辑LTspice原理图和提取仿真数据的说明。

本文介绍可以使用LTspice进行的统计分析。这不是对6-sigma设计原则、中心极限定理或蒙特卡罗采样的回顾。

 

公差分析

在系统设计中,为了保证设计成功,必须考虑参数容差约束。有一种常用方法是使用最差情况分析(WCA),在进行这种分析时,将所有参数都调整到最大容差限值。在最差情况分析中,会分析系统的性能,以确定最差情况的结果是否在系统设计规格范围内。最差情况分析的效力有一些局限性,例如:

u  最差情况分析要求确定哪些参数需要取最大值,哪些需要取最小值,以得出真实的最差情况的结果。

u  最差情况分析的结果往往会违反设计规范要求,致使必需选择价格高昂的元件才能得到可接受的结果。

u  从统计学来说,最差情况分析的结果不能代表常规观察到的结果;要研究展示最差情况分析性能的系统,可能需要使用大量的被测系统。

进行系统容差分析的另一种替代方法是使用统计工具来进行元件容差分析。统计分析的优点在于:得出的数据的分布能够反映出在物理系统中通常需要测量哪些参数。在本文中,我们使用LTspice来仿真电路性能,利用蒙特卡罗和高斯分布来体现参数容差变化,并将其与最差情况分析仿真进行比较。

除了提到的关于最差情况分析的一些问题外,最差情况分析和统计分析都能提供与系统设计相关的宝贵见解。关于如何在使用LTspice时使用最差情况分析的教程,请参见Gabino Alonso和Joseph Spencer撰写的文章“LTspice: 利用最少的仿真运行进行最差情况的电路分析”。

蒙特卡罗分布

图1显示在LTspice中建模的基准电压,使用蒙特卡罗分布。标称电压源为1.25 V,公差为1.5%。蒙特卡罗分布在1.5%的容差范围内,定义251个电压状态。图2显示251个值的直方图,图中包含50个条形区间(bin)。表1表示与该分布相关的统计结果。

proxy1.png

高斯分布

图3显示在LTspice中建模的基准电压,使用高斯分布。标称电压源为1.25 V,容差为1.5%。蒙特卡罗分布在1.5%的容差范围内,定义251个电压状态。图4显示251个值的直方图,图中包含50个条形区间(bin)。表2表示与该分布相关的统计结果。

proxy2.png

proxy3.png

为了仿真电压调节的容差分析,反馈电阻R2和R3的容差定义为1%,内部基准电压的容差定义为1.5%。本节介绍三种容差分析方法:使用蒙特卡罗分布的统计分析、使用高斯分布的统计分析,以及最差情况分析(WCA)。 

图7和图8显示使用蒙特卡罗分布仿真的原理图和电压调节直方图。

proxy4.png

proxy5.png

proxy 6.png

proxy7.png

致谢

Simulations were conducted in LTspice.

仿真均在LTspice中完成。

作者简介 

Steve Knudtsen是ADI公司的一名高级现场应用工程师,工作地点在美国科罗拉多。他毕业于科罗拉多州立大学,拥有电子工程学士学位,自2000年开始,一直在凌力尔特和ADI公司工作。


本站内容除特别声明的原创文章之外,转载内容只为传递更多信息,并不代表本网站赞同其观点。转载的所有的文章、图片、音/视频文件等资料的版权归版权所有权人所有。本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如涉及作品内容、版权和其它问题,请及时通过电子邮件或电话通知我们,以便迅速采取适当措施,避免给双方造成不必要的经济损失。联系电话:010-82306118;邮箱:aet@chinaaet.com。