《电子技术应用》
您所在的位置:首页 > 其他 > 设计应用 > 基于EEMD和LeNet-5的脑电信号情绪识别
基于EEMD和LeNet-5的脑电信号情绪识别
2022年电子技术应用第5期
蔡 靖,周云鹏,程晓宇,辛佳雯,孙慧慧
吉林大学 仪器科学与电气工程学院,吉林 长春130061
摘要: 随着科学技术的进步,人们对情绪这一概念有了全新的认识,从过去认为情绪来源于“心”逐渐发展到了当下普遍认为情绪来源于“脑”。针对脑电信号所具有的诸多特性,首先通过去除心电、肌电噪声,滤波提取脑电信号中的有用波段;再利用集合经验模态分解算法(Ensemble Empirical Mode Decomposition,EEMD)对脑电信号进行特征提取,利用提取特征通过空间插值法绘制脑电地形图;接着利用LeNet-5算法开展具体情绪识别,并建立模型。最终通过不断地改进模型,显著提高了情绪识别准确率,准确率最高可达80.1%。
关键词: EEG EEMD LeNet-5 情绪识别
中图分类号: TP391.7
文献标识码: A
DOI:10.16157/j.issn.0258-7998.211721
中文引用格式: 蔡靖,周云鹏,程晓宇,等. 基于EEMD和LeNet-5的脑电信号情绪识别[J].电子技术应用,2022,48(5):98-103.
英文引用格式: Cai Jing,Zhou Yunpeng,Cheng Xiaoyu,et al. Emotion recognition of EEG based on EEMD and LeNet-5[J]. Application of Electronic Technique,2022,48(5):98-103.
Emotion recognition of EEG based on EEMD and LeNet-5
Cai Jing,Zhou Yunpeng,Cheng Xiaoyu,Xin Jiawen,Sun Huihui
College of Instrumentation & Electrical Engineering,Jilin University,Changchun 130061,China
Abstract: With the progress of science and technology, people have a new understanding of the concept of emotion, from the past that emotion comes from "heart" gradually developed to the current general belief that emotion comes from "brain". In view of the many characteristics of EEG signals, this experiment firstly extracted the useful bands of EEG signals through filtering, then used EEMD algorithm to extract the characteristics of EEG signals and used the characteristics to draw EEG topographic map by spatial interpolation method,and then used LeNet-5 algorithm to carry out specific emotional analysis and establish a model. Finally, through continuous improvement of the model, the accuracy of emotion recognition was significantly improved, and accuracy is 80.1%.
Key words : EEG;EEMD;LeNet-5;emotion recognition

0 引言

    脑电图(Electro Encephalo Gram,EEG)是一种利用电信号来记录大脑生理活动的方法。脑电图能够记录大脑正常活动过程中的各种电信号变化,可以在整体上反映出脑神经细胞产生的各种生理电信号指标于大脑皮层或其他头皮细胞表面处的变化情况。随着科学技术的发展,人们对情绪有了全新的认识,从最开始的情绪来源于“心”发展到了现在的情绪来源于“脑”。随着对人类大脑各方面的深入研究,人们逐渐发现了与大脑生理活动关系密切的特殊电信号。脑电位活动变化主要是由脑神经细胞的内部化学变化过程以及其他生理化学变化过程产生的,利用记录仪可以得到不同的大脑电位活动变化表现方式以及电位变化剧烈程度,检测出各个脑神经元的活动状态。

    脑电活动是一些自发的并且具有一定节律的神经学和电子学活动,其信号频率变动范围处在1 Hz~30 Hz之间的通常被认为是具有生理特征的重要信号,该区间可进一步分为δ(1 Hz~3 Hz)、θ(4 Hz~7 Hz)、α(8 Hz~12 Hz)和β(13 Hz~30 Hz)4个不同的频段。

    EEG信号情绪分类识别的研究进展中,有相关实验选取了大脑前额区脑电信号的fp2-fp1、af4-af3、f4-f3、f8-f7、fc6-fc5等14个导联作为研究对象进行研究[1];陆文娟[2]对比发现β波与情绪活动的相关度较高;金雨鑫[3]应用深度森林对时域和频域数据进行了多粒度特征扫描,提取了融合时域特征向量和频域特征向量的特征向量,给出了对未知数据的预测;曾红梅[4]提取了功率谱、功率谱熵等特征进行情绪识别;李明爱[5]利用小波包变换时频分解重构获取了EEG信号,将瞬时功率信号输入给DBN,进行无监督训练预训练,之后通过有监督训练进行微调,实现了特征的自动提取,并利用softmax分类器实现了模式分类。




本文详细内容请下载:http://www.chinaaet.com/resource/share/2000004286




作者信息:

蔡  靖,周云鹏,程晓宇,辛佳雯,孙慧慧

(吉林大学 仪器科学与电气工程学院,吉林 长春130061)




wd.jpg

此内容为AET网站原创,未经授权禁止转载。