基于Radon变换的高分辨SAR图像舰船目标精细分割
2023年电子技术应用第5期
徐新瑶1,2,王小龙1
(1.中国科学院空天信息创新研究院,北京100094;2.中国科学院大学 电子电气与通信工程学院,北京 100094)
摘要: 随着合成孔径雷达(Synthetic Aperture Radar, SAR)分辨率的提升,利用SAR图像进行舰船检测和识别逐渐成为海洋目标监视的重要手段。但受限于SAR成像机理,高分辨SAR图像旁瓣问题开始凸显,这严重影响舰船目标的主体分割。提出一种基于Radon变换的舰船目标精细分割算法,通过将SAR图像进行Radon变换,在Radon域实现了旁瓣数据的识别与剔除。然后利用形态学滤波去除细碎旁瓣,最终实现了SAR图像旁瓣的有效抑制。利用高分三号和COSMO-SkyMed卫星图像数据对算法进行验证,结果表明该算法相比于现有分割算法,在区域内均匀性、区域间差异性、形状复杂度等方面均具有较好的提升。
中图分类号:TN957
文献标志码:A
DOI: 10.16157/j.issn.0258-7998.223260
中文引用格式: 徐新瑶,王小龙. 基于Radon变换的高分辨SAR图像舰船目标精细分割[J]. 电子技术应用,2023,49(5):142-148.
英文引用格式: Xu Xinyao,Wang Xiaolong. Fine segmentation of ship targets for high-resolution SAR images based on Radon transform[J]. Application of Electronic Technique,2023,49(5):142-148.
文献标志码:A
DOI: 10.16157/j.issn.0258-7998.223260
中文引用格式: 徐新瑶,王小龙. 基于Radon变换的高分辨SAR图像舰船目标精细分割[J]. 电子技术应用,2023,49(5):142-148.
英文引用格式: Xu Xinyao,Wang Xiaolong. Fine segmentation of ship targets for high-resolution SAR images based on Radon transform[J]. Application of Electronic Technique,2023,49(5):142-148.
Fine segmentation of ship targets for high-resolution SAR images based on Radon transform
Xu Xinyao1,2,Wang Xiaolong1
(1.Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; 2.School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract: With the improvement of the resolution of synthetic aperture radar (SAR), the use of SAR images for ship detection and identification has gradually become an important means of marine target surveillance. However, limited by the SAR imaging mechanism, the side-lobe problem of high-resolution SAR images is becoming prominent gradually, which seriously affects the subject segmentation of ship targets. In this paper, a fine segmentation algorithm of ship target based on Radon transform is proposed. By performing Radon transform on SAR images, the identification and elimination of sidelobe are realized in the Radon domain. Then, the morphological filtering is used to remove the fine side lobes. Finally, the effective suppression of the SAR image side lobes is realized. The algorithm is verified by GF-3 and COSMO-SkyMed satellite image data. The results show that the algorithm has better performance in uniformity of intra region, dissimilarity of inter region, and complexity of shape compared with existing segmentation algorithms.
Key words : synthetic aperture radar (SAR);sidelobe effect;fine segmentation;Radon transform
0 引言
合成孔径雷达(Synthetic Aperture Radar, SAR)是一种主动式微波成像传感器,不同于光学和红外传感雷达,SAR可实现全天候成像,同时具备穿透云雾的能力,可有效保证极端天气条件下的稳定工作。由于SAR具有以上优良特性,早在上世纪70年代,搭载SAR传感器的卫星便在海洋监测领域投入使用。经过半个世纪的发展,高分辨率星载SAR系统在海上舰船检测与识别、渔业管理、海洋救援等领域正发挥着至关重要的作用。
在SAR图像处理中,作为舰船识别的关键算法,基于特征提取的SAR图像检测已得到人们的广泛研究。此类算法大致分为三个阶段:一是目标的精细分割,即预处理阶段;二是目标的特征提取和选择;三是分类器或分类策略的设计。其中目标的精细分割是为了剔除背景和旁瓣等干扰,便于舰船特征的准确提取,实现最终的正确分类。随着SAR分辨率的进步越高,人们在获取舰船清晰的轮廓和纹理的同时,也伴随着更为严重的旁瓣效应。旁瓣通常在舰船的后向散射强烈、聚焦效果较差等区域形成,严重影响着舰船长度、宽度、面积等重要几何特征的高精度提取,因此不少学者针对旁瓣的抑制展开了多项研究。
本文详细内容请下载:https://www.chinaaet.com/resource/share/2000005311
作者信息:
徐新瑶1,2,王小龙1
(1.中国科学院空天信息创新研究院,北京100094;2.中国科学院大学 电子电气与通信工程学院,北京 100094)
此内容为AET网站原创,未经授权禁止转载。