《电子技术应用》
您所在的位置:首页 > 其他 > 设计应用 > 面向分类任务的隐私保护协作学习技术
面向分类任务的隐私保护协作学习技术
网络安全与数据治理 2023年第5期
黎兰兰,张信明
(中国科学技术大学计算机学院,安徽合肥230026)
摘要: 随着相关法律法规的发布和人们隐私意识的觉醒,隐私保护要求不断提高。针对分类任务场景,提出了一种隐私性与效用性并重的面向分类任务的隐私保护协作技术(PCTC)。在隐私安全方面,将同态加密和差分隐私相结合,并设计了一种安全聚合机制,实现更加健壮的隐私保护;在效用性方面,引入信息熵的计算因子对标签可信度进行度量,降低标注噪声对模型性能的影响。最后对所提出的方案进行了安全性分析,并在公开数据集上进行了实验验证。结果表明PCTC在保证数据隐私安全的同时大幅度提升了模型性能,具有较为广阔的应用前景。
中图分类号:TP393
文献标识码:A
DOI:10.19358/j.issn.2097-1788.2023.05.007
引用格式:黎兰兰,张信明.面向分类任务的隐私保护协作学习技术[J].网络安全与数据治理,2023,42(5):36-43.
Privacy-preserving collaborative learning technology for classification
Li Lanlan, Zhang Xinming
(School of Computer Science and Technology, University of Science and Technology of China, Hefei 230026, China)
Abstract: With the release of relevant laws and regulations and the awakening of people’s privacy awareness, the requirements for privacy protection are constantly increasing. Aiming at the scenario of classification, this paper proposes a Privacypreserving Collaborative Learning Technology for Classification (PCTC) that emphasizes both privacy and utility. In terms of privacy, homomorphic encryption and differential privacy are combined and a secure aggregation mechanism is designed to achieve more robust privacy protection. In terms of utility, the calculation factor of information entropy is introduced to measure the credibility of labels, which can reduce the impact of labeling noise on model performance. Finally, the security analysis of the proposed scheme is carried out, and the experiments are implemented on public datasets. The results show that PCTC significantly improves model performance while ensuring privacy and security of the data, and has broad application prospects.
Key words : privacy preservation; data labeling; classification task; homomorphic encryption; differential privacy

0     引言

近年来,随着数据产生速度和计算机算力的持续提升,机器学习在目标识别、语音识别、自然语言处理和对象检测等许多领域都取得了巨大突破。新兴的机器学习尤其是深度学习更是为产业的升级和变革提供了推动力量,其中包括智慧农业、智慧医疗等行业。良好的机器学习框架特别是有监督的人工神经网络往往需要大量的标注数据,然而现实中任何单一实体都不可能总是拥有全部标注数据,多方协作学习是解决这一问题的有效方案。



本文详细内容请下载:https://www.chinaaet.com/resource/share/2000005332




作者信息:

黎兰兰,张信明

(中国科学技术大学计算机学院,安徽合肥230026) 


微信图片_20210517164139.jpg

此内容为AET网站原创,未经授权禁止转载。