融合蛋白质语言模型与深度神经网络的植物蛋白质相互作用预测研究
电子技术应用
古海博,王成凤,金远,池方爱,李颜娥
浙江农林大学 数学与计算机科学学院
摘要: 预测植物中的蛋白质-蛋白质相互作用(PPI)具有重要的生物学意义。同时采用了4种编码方法及深度神经网络构建了蛋白质相互作用预测模型。结果表明,提出的融合蛋白质语言模型Ankh与深度神经网络的方法构建的PPI预测模型性能在3种植物数据集上均获得了最优的AUPR和AUC值,Sen及MCC值也均优于其他4种蛋白质相互作用预测模型。当模型在水稻、大豆的植物PPI数据集上进行测试时,所提出的模型AUPR值分别为0.802 5、0.730 1,AUC值分别为0.956 2、0.950 7。这些优异的结果表明,融合蛋白质语言模型Ankh的PPI模型可以作为植物蛋白质相互作用预测的一个有前途的工具。
中图分类号:TP399 文献标志码:A DOI: 10.16157/j.issn.0258-7998.234794
中文引用格式: 古海博,王成凤,金远,等. 融合蛋白质语言模型与深度神经网络的植物蛋白质相互作用预测研究[J]. 电子技术应用,2024,50(4):22-28.
英文引用格式: Gu Haibo,Wang Chengfeng,Jin Yuan,et al. Prediction of plant protein-protein interaction based on fusion of protein language model and deep neural network[J]. Application of Electronic Technique,2024,50(4):22-28.
中文引用格式: 古海博,王成凤,金远,等. 融合蛋白质语言模型与深度神经网络的植物蛋白质相互作用预测研究[J]. 电子技术应用,2024,50(4):22-28.
英文引用格式: Gu Haibo,Wang Chengfeng,Jin Yuan,et al. Prediction of plant protein-protein interaction based on fusion of protein language model and deep neural network[J]. Application of Electronic Technique,2024,50(4):22-28.
Prediction of plant protein-protein interaction based on fusion of protein language model and deep neural network
Gu Haibo,Wang Chengfeng,Jin Yuan,Chi Fangai,Li Yan′e
College of Mathematics and Computer Science, Zhejiang A&F University
Abstract: Predicting protein-protein interaction (PPI) in plants holds significant biological implications. This study has employed four encoding methods and a deep neural network to construct a model for predicting protein interactions. The results show that the developed PPI prediction model using the integrated approach of the protein language model Ankh with a deep neural network has achieved optimal AUPR and AUC values across three plant datasets, with its Sen and MCC values also outperforming those of four other models designed for protein interaction predictions. When tested on plant PPI datasets for rice and soybean, the proposed model has yielded AUPR scores of 0.802 5 and 0.730 1 respectively, and AUC scores of 0.956 2 and 0.950 7 respectively. These outstanding results indicate that the PPI model incorporating the protein language model Ankh can serve as a promising tool for predicting protein-protein interactions in plants.
Key words : plant protein-protein interation;protein language model;deep neural network
引言
蛋白质-蛋白质相互作用(Protein-Protein Interaction,PPI)的研究可以为细胞生物学功能探索、育种干预等提供指导,在生命科学和信息科学的发展中具有不可替代的作用[1]。因此,准确预测蛋白质之间的相互作用具有至关重要的作用[2]。
本文详细内容请下载:
http://www.chinaaet.com/resource/share/2000005943
作者信息:
古海博,王成凤,金远,池方爱,李颜娥
(浙江农林大学 数学与计算机科学学院,浙江 杭州 311300)
此内容为AET网站原创,未经授权禁止转载。