基于FPGA的便携心电智能诊断加速器及优化选芯方案
电子技术应用
郭千禧,刘文涵,罗德宇,黄启俊
武汉大学 物理科学与技术学院
摘要: 心电图(electrocardiogram, ECG)是诊断与心脏相关疾病的关键工具,可穿戴心电监护仪Holter是院外检测的重要手段,小型化、便携性、实时检测是优化方向。人工智能技术应用于包括心电诊断的各个领域,但存在参数量大、难于小型化、计算速度慢的问题,不满足便携心电监护仪的要求,而可编程逻辑门器件(Field-Programmable Gate Array, FPGA)有并行加速的特性。在AI智能算法硬件化的工程应用上,存在成本、速度、资源利用率的权衡,需要进行科学的芯片选型。开发了一种基于1D-CNN的、用于心电诊断的BeatNet ,对于4分类的检测任务,该模型具有98.5% 的分类准确率。
中图分类号:TN911.72 文献标志码:A DOI: 10.16157/j.issn.0258-7998.234802
中文引用格式: 郭千禧,刘文涵,罗德宇,等. 基于FPGA的便携心电智能诊断加速器及优化选芯方案[J]. 电子技术应用,2024,50(6):89-95.
英文引用格式: Guo Qianxi,Liu Wenhan,Luo Deyu,et al. FPGA-based portable ECG smart diagnostic gas pedal and optimized core selection scheme[J]. Application of Electronic Technique,2024,50(6):89-95.
中文引用格式: 郭千禧,刘文涵,罗德宇,等. 基于FPGA的便携心电智能诊断加速器及优化选芯方案[J]. 电子技术应用,2024,50(6):89-95.
英文引用格式: Guo Qianxi,Liu Wenhan,Luo Deyu,et al. FPGA-based portable ECG smart diagnostic gas pedal and optimized core selection scheme[J]. Application of Electronic Technique,2024,50(6):89-95.
FPGA-based portable ECG smart diagnostic gas pedal and optimized core selection scheme
Guo Qianxi,Liu Wenhan,Luo Deyu,Huang Qijun
Department of Physical Science and Technology, Wuhan University
Abstract: Electrocardiogram (ECG) is a key tool for diagnosing heart-related diseases. The wearable ECG monitor Holter is an important means of out-of-hospital detection. Miniaturization, portability, and real-time detection are the optimization directions. Artificial intelligence technology is used in various fields including electrocardiogram diagnosis, but there are problems such as large number of parameters, difficulty in miniaturization, and slow calculation speed. It does not meet the requirements of portable electrocardiogram monitors, and programmable logic gate devices (Field-Programmable Gate Array, FPGA) has parallel acceleration characteristics. This article developed a BeatNet based on 1D-CNN for ECG diagnosis.
Key words : electrocardiogram detection;deep learning;FPGA;RTL-level;portable medical device
引言
根据世界卫生组织的数 NC据[1],心血管疾病(Cardiovascular disease, CVD)仍然是全球健康面临的重大挑战。CVD是全球死亡的主要原因(占全部死亡原因的35%),每年约有1790万人死于此因。在心血管疾病的预防和治疗中,心电图(electrocardiogram, ECG)在检测和诊断各种心脏状况方面起着关键作用[2]。解读心电图需要一套特定的技能和知识,深度学习的最新进展[3]使得高准确性的人工智能算法用于心电信号诊断,一方面可以大幅度减少医生诊断工作量,另一方面配合边缘硬件部署可以实时自动监测心脏状态。
本文详细内容请下载:
https://www.chinaaet.com/resource/share/2000006037
作者信息:
郭千禧,刘文涵,罗德宇,黄启俊
(武汉大学 物理科学与技术学院,湖北 武汉430072)
此内容为AET网站原创,未经授权禁止转载。