《电子技术应用》
您所在的位置:首页 > 模拟设计 > 设计应用 > 基于CNN-BiLSTM-Attetion的银杏液流预测模型及环境因子影响研究
基于CNN-BiLSTM-Attetion的银杏液流预测模型及环境因子影响研究
电子技术应用
李波,武斌
浙江农林大学 数学与计算机科学学院
摘要: 树木液流受生理活动和多重环境因子的共同作用,表现为非线性和随机性特征,为预测模型的精确度带来挑战。对此,结合CNN卷积层、BiLSTM双向网络结构和注意力机制的优势分别对树干液流序列的局部特征、长期依赖和关键信息进行提取,并根据自测银杏液流数据集构建基于CNN-BiLSTM-Attetion的树干液流预测模型。该模型的R2、MSE和MAE分别为0.977 3、0.002 9和0.013 4,相较于CNN、BiLSTM、XGBoost、RNN和TCN建立的模型均有不同程度的提高。另外,还利用特征工程对环境因子的重要性进行排名,分析银杏树干液流在生长季初期对环境因子的响应规律,对银杏生长季初期的灌溉和养护提供理论依据。
中图分类号:TP391 文献标志码:A DOI: 10.16157/j.issn.0258-7998.245138
中文引用格式: 李波,武斌. 基于CNN-BiLSTM-Attetion的银杏液流预测模型及环境因子影响研究[J]. 电子技术应用,2024,50(9):101-105.
英文引用格式: Li Bo,Wu Bin. Research of ginkgo sap flow prediction model based on CNN-BiLSTM-Attetion and the impact of environmental factors[J]. Application of Electronic Technique,2024,50(9):101-105.
Research of ginkgo sap flow prediction model based on CNN-BiLSTM-Attetion and the impact of environmental factors
Li Bo,Wu Bin
College of Mathematics and Computer Science, Zhejiang Agriculture and Forestry University
Abstract: Sap flow is subject to the combined effects of physiological activities and multiple environmental factors, and exhibits nonlinear and stochastic characteristics, which poses a challenge to the accuracy of prediction models. In this regard, the advantages of CNN convolutional layer, BiLSTM bidirectional network structure and attention mechanism are combined to extract the local features, long-term dependence and key information of sap flow sequences, respectively, and the CNN-BiLSTM-Attetion sap flow prediction model is constructed according to the self-test ginkgo sap flow data set. The model has the R2, MSE, and MAE of 0.977 3, 0.002 9, and 0.013 4, respectively, which are all improved in varying degrees compared with the CNN, BiLSTM, XGBoost, RNN and TCN. In addition, feature engineering is also used to rank the importance of environmental factors and analyze the response regularity of ginkgo sap flow to environmental factors at the beginning of the growing season, which provides a theoretical basis for irrigation and maintenance of ginkgo at the beginning of the growing season.
Key words : sap flow prediction model;CNN-BiLSTM-Attetion;environmental factors;early growing season

引言

森林是地球生态系统不可或缺的一部分,由各种树种组成的森林系统约占地球陆地总面积的1/3[1],树木的蒸腾作用在环境变化中起着至关重要的作用。所以,准确预测树木蒸腾量对地球水文平衡和制定气候变化下的可持续发展战略具有重要意义[2-3]。树干液流是树木生长和生理活动的重要条件之一,反映了树木的水分和养分运输状况。通过监测树干液流的速率和方向[4],可以了解树木的需水和耗水特性,进而评估树木的水分利用效率和养分供应情况[5]。因此对树干液流的准确预测变得十分重要。


本文详细内容请下载:

http://www.chinaaet.com/resource/share/2000006150


作者信息:

李波,武斌

(浙江农林大学 数学与计算机科学学院,浙江 杭州 311300)


Magazine.Subscription.jpg

此内容为AET网站原创,未经授权禁止转载。