《电子技术应用》
您所在的位置:首页 > 人工智能 > 设计应用 > 基于机器学习的网络入侵检测技术综述
基于机器学习的网络入侵检测技术综述
网络安全与数据治理
张茜,王晓菲,王亚洲,尚颖,王芳鸣,曾颖明
北京计算机技术及应用研究所
摘要: 新兴技术的发展推动了机器学习等智能化方法在网络入侵检测的广泛应用,有效提高了入侵检测的效率和准确率,然而基于机器学习的网络入侵检测领域仍然面临着大规模网络数据处理难、数据样本不平衡、未知威胁难以有效检测、模型泛化能力差等挑战。文章对基于机器学习的网络入侵检测技术进行综述和总结,对比和分析当前主流方法的优势和局限性,并总结和讨论该领域目前挑战和未来展望,以便为该领域人员了解最新研究动态提供借鉴参考。
中图分类号:TP309文献标识码:ADOI:10.19358/j.issn.2097-1788.2024.12.001
引用格式:张茜,王晓菲,王亚洲,等. 基于机器学习的网络入侵检测技术综述[J].网络安全与数据治理,2024,43(12):1-9,18.
Overview of network intrusion detection technology based on machine learning
Zhang Xi,Wang Xiaofei,Wang Yazhou,Shang Ying,Wang Fangming,Zeng Yingming
Beijing Institute of Computer Technology and Application
Abstract: The development of emerging technologies has promoted the wide application of intelligent methods such as machine learning in the field of network intrusion detection, and effectively improved the efficiency and accuracy of intrusion detection. However, the field of network intrusion detection based on machine learning still faces challenges such as difficulty in processing large-scale network data, imbalance of data samples, difficulty in effectively detecting unknown threats, and poor generalization ability of models. This paper aims to summarize the network intrusion detection technology based on machine learning, compare and analyze the advantages and limitations of the current mainstream methods, and summarize and discuss the current challenges and future prospects in this field, so as to provide reference for people in this field to understand the latest research trends.
Key words : machine learning; intrusion detection; intelligence

引言

随着世界范围内的网络攻击威胁不断加剧,防火墙、密码机等传统被动的安全防护手段已无法完全应对复杂的、动态的、隐蔽的新型未知威胁,亟需网络入侵检测等主动的安全防护手段,发现和阻断来自强敌多样化的网络威胁。网络入侵检测技术可以按照基于数据来源、基于工作方式、基于检测结果、基于检测方法来进行分类,如图1所示。相较于传统的基于模式匹配、专家系统的入侵检测方法,机器学习智能化模型能够学习数据样本的攻击行为特征或分类、聚类模式,有效提高网络威胁检测的效率和准确率。本文重点介绍和分析基于机器学习的网络入侵检测,分别从基于监督学习、基于无监督学习两个方面进行详细阐述。


本文详细内容请下载:

https://www.chinaaet.com/resource/share/2000006260


作者信息:

张茜,王晓菲,王亚洲,尚颖,王芳鸣,曾颖明

(北京计算机技术及应用研究所,北京100854)


Magazine.Subscription.jpg

此内容为AET网站原创,未经授权禁止转载。