《电子技术应用》
您所在的位置:首页 > 通信与网络 > 设计应用 > 基于特征点提取和PCA的改进ICP点云配准方法
NI-LabVIEW 2025
基于特征点提取和PCA的改进ICP点云配准方法
电子技术应用
马然
广州南方测绘科技股份有限公司
摘要: 传统迭代最近点(Iterative Closest Point, ICP)方法进行点云配准时存在实时性差、易陷入局部极值且配准精度低等问题。提出一种基于特征点提取、主成分分析(Principal Component Analysis, PCA)粗配准和ICP精配准的三步点云配准方法。首先定义点云数据局部密度概念,并自动选择局部密度较大的点作为特征点,然后利用PCA对提取的特征点进行分析,根据PCA主分量方向计算配准所需平移和旋转参数。最后利用ICP对数据进行精配准。试验结果表明,所提方法相对于对比方法的配准精度提升超过13.4%,实时性提升超过38.2%,并且在低信噪比条件下表现出了更高的适应性,具有较高的应用前景。
中图分类号:P209 文献标志码:A DOI: 10.16157/j.issn.0258-7998.245473
中文引用格式: 马然. 基于特征点提取和PCA的改进ICP点云配准方法[J]. 电子技术应用,2025,51(4):110-115.
英文引用格式: Ma Ran. Improved ICP point cloud registration method based on feature point extraction and PCA[J]. Application of Electronic Technique,2025,51(4):110-115.
Improved ICP point cloud registration method based on feature point extraction and PCA
Ma Ran
Guangzhou Southern Surveying and Mapping Technology Co., Ltd.
Abstract: The traditional Iterative Closest Point (ICP) method for point cloud registration has problems such as poor real-time performance, susceptibility to local extremum, and low registration accuracy. This paper proposes a three-step point cloud registration method based on feature point extraction, Principal Component Analysis (PCA) coarse registration, and ICP fine registration. Firstly, it defines the concept of local density in point cloud data and automatically selects points with higher local density as feature points. Then, it uses PCA to analyze the extracted feature points and calculates the required translation and rotation parameters for registration based on the principal component direction of PCA. Finally, it uses ICP to perform precise data registration. The experimental results show that the proposed method improves registration accuracy by more than 13.4% compared to the comparison methods, improves real-time performance by more than 38.2%, and exhibits higher adaptability under low signal-to-noise ratio conditions, with high application prospects.
Key words : 3D laser;point cloud registration;iteration closest point;local density;principal component analysis

引言

三维激光扫描技术具有高精度、高分辨率和非接触等优点,近年来在医疗、测绘、军事、交通等众多领域得到广泛应用。由于扫描对象尺寸大或扫描角度限制等原因,三维激光扫描得到的点云数据难以一次性实现对扫描对象的完整描述,通常需要进行多次多角度点云数据采集,再通过点云配准算法对获得的多次多角度数据进行配准才能获得完整的对象描述[1-2]。这一过程中,高精度、高实时性的点云配准算法是关键。

迭代最近点(Iterative Closest Point, ICP)算法是Besl等于1992年提出的一种经典点云配准算法[3],也是目前应用最为广泛的一种方法。ICP在多次多角度点云数据初始位置相差不大的情况下能够获得较高的配准精度,但是当初始位姿差异较大或点云重叠度较低时算法易陷入局部最优,实时性和配准精度均会出现较大程度下降[4-6]。文献[7]将全局分界支定(Branch-and-bound, BNB)方法引入ICP,提出一种具备全局优化能力的BNB-ICP点云配准算法,能够提升ICP算法对初始位置的适应性,但是算法运算效率较低;文献[8]提出一种结合快速点特征直方图(Fast Point Features Histograms, FPFH)和ICP结合的点云配准算法,利用FPFH得到点云特征点,并根据特征点实现点云粗配准,之后利用ICP进行精配准,虽然改善了配准精度,但是不适合初始位姿较差的情况;文献[9]将八叉树算法引入点云配准领域,利用八叉树建立不同姿态点云数据之间的拓扑关系,进而利用ICP完成配准,该算法运算效率较高且对结构简单对象的配准效果较好,但是不适合结果复杂对象配准;文献[10]首先计算点云数据的主方向和曲率,并根据主方向和曲率选择特征点进行粗配准,最后利用ICP进行精配准,该方法运算效率高,实时性好,但是当对象表面结构较为平滑时,即曲率特征不明显时该方法的鲁棒性较差;文献[11]将Procrustes正交分解与ICP结合,利用Procrustes对点云数据进行正交分析获得平移和旋转转换参数,进而利用ICP完成点云配准,该方法精度较高且具有较好的鲁棒性,但是对噪声敏感,不适合低信噪比情况应用。

在上述研究的基础上,本文提出一种基于点云数据局部密度提取特征点,然后利用PCA对特征点进行投影计算平移和旋转参数从而实现粗配准,最后利用ICP进行精配准的三步配准方法。利用斯坦福大学标准数据集验证了所提方法的有效性和优越性。


本文详细内容请下载:

https://www.chinaaet.com/resource/share/2000006405


作者信息:

马然

(广州南方测绘科技股份有限公司, 广东 广州 510000)


Magazine.Subscription.jpg

此内容为AET网站原创,未经授权禁止转载。