MAX1403能够提供具有独立编程(增益从1V/V~+128V/V)的三路真差动输入通道,并能补偿输入参数电压的直流失调。而这三路真差动输入通道还能组成五路伪差动输入通道。另外,该芯片还具有两个附加的差动校正通道,它能对增益和失调误差进行校正。
MAX1403 能够对所有输入信号进行处理,并通过串行数字接口向外提供转换结果。当主机时钟频率为2.4576MHz或1.024MHz时,片内数字滤波器能够对线路频率和有关谐波频率进行处理,并使这些频率的幅值为零。以使在无需外接滤波器的条件下也能获得较好的滤波效果,同时,这也有助于提高输出端数字信号的质量。
MAX1403的主要特点如下:
●分辨率为18位;
●具有8个寄存器;
●功耗低
●具有两个匹配的传感器激励电流源;
●3个真差动输入或5个伪差动输入通道;
●2个附加输入校正通道;
●带有一个双向串行通讯接口;
●模拟电源和数字电源采用独立供电方式;
●可用软件控制增益和失调。
2 引脚功能
MAX1403芯片采用28引脚SSOP封装,它的引脚排列如图1所示。各引脚功能如下:
CLKIN:时钟输入引脚;
CLKOUT:时钟输出引脚。使用外部晶振时,将外部晶振连在CLKIN和CLKOUT之间;当使用外部其它时钟信号时,其时钟信号(频率为2.4576MHz或1.024MHz)在CLKIN输入,而CLKOUT不连。
CS:片选输入引脚。低电平有效。当CS为低电平时,允许芯片工作在三线接口模式,并能选择串行接口上的多个器件或作为帧同步信号。
RESET:复位输入引脚。低电平有效。当RESET为低电平时,能使控制逻辑、接口逻辑、数字滤波器和模拟调制器在上电后复位;RESET为高电平时,退出复位。
DS1:辅助数字输入位1的数字输入引脚;
DS0:辅助数据输入位0的数字输入引脚;
OUT2:传感器激励电流源2;
OUT1:传感器激励电流源1;
AGND:模拟地。为模拟电路的参考点;
V+:模拟正电源电压输入引脚,选择范围为+2.7V~+3.6V;
AIN1~AIN6:分别为模拟输入通道1~6脚;
CALGAIN-:增益校正负输入引脚;
CALGAIN+:增益校正正输入引脚;
REFIN-:差动参考负输入引脚;
REFIN+:差动参考正输入引脚;
CALOFF-:失调校正负输入引脚;
CALOFF+:失调校正正输入引脚;
DGND:数字地引脚。为数字电路参考点;
VDD:数字电源电压输入引脚。范围在+2.7V~+3.6V之间;
INT:中断输出引脚;
DOUT:串行数据输出引脚;
DIN:串行数据输入引脚;
SCLK:串行时钟输入引脚;
3 内部结构
MAX1403的内部功能结构图如图2所示。从图中可以看出,该芯片由一个开关结构、一个调制器、一个PGA(可编程增益放大器)、两个缓冲器、一个DAC、一个数字滤波器、一个振荡器、两个匹配的传感器激励电流源和一个双向串行通讯接口组成。
4 主要参数
为了能充分发挥MAX1403的性能和正确使用它,必须对推荐参数和极限参数有一个定量的了解,现将主要参数说明如下:
4.1 工作参数
MAX1403的推荐工作参数如下:
●模拟电源电压(V+):2.7V~3.6V;
●数字电源电压(VDD):2.7V~3.6V;
●参考电压:1.25V;
●时钟频率:2.4576MHz;
●无漏码精度:16位;
●模拟输入电压:(VAGND-30mV)~(V++30mV);
●数字输入电压:0.4V~2V;
●数字输出电压:0.4V~(VDD-0.3V);
●工作温度:
MAX1403CA1:0~+70℃;
MAX1403EA1:-40~+85℃ ;
●功耗:2~22mW;
4.2 极限参数
下面是MAX1403 ADC芯片的极限参数。
●模拟电源电压(V+):-0.3V~+6V;
●数字电源电压(VDD):-0.3V~+6V;
●模拟地与数字地间的电压:-0.3V~+0.3V;
●模拟输入电压:-0.3V~(V++0.3V);
●模拟输出电压:-0.3V~(V++0.3V);
●参考电压:-0.3V~(V++0.3V);
●所有数字输出电压:-0.3V~(VDD+0.3V);
●所有其它数字输入电压:-0.3V~+6V;
●时钟输入和时钟输出电压:-0.3V~(VDD+0.3V);
●功耗:50mW。
5 应用电路
由于MAX1403具有多种功能,所以在各种宽动态范围(电子称和压力传感器)和串行接口的单片机系统中颇受欢迎,下面给出几个主要的应用电路。
5.1 RTD应用电路
由MAX1403 和少量外围元件组成的3线RTD实用线路如图3所示。图中的两个电流源(200μA)是经过严格匹配的,其目的是为了补
偿3线RTD线路中的误差。在3线 RTD电路中,如果只作用一个电流源,那么引线电阻将会对系统产生误差,此时200μA电流通过RL1将产生一个误差电压并加到PGA的两上输入端(AIN1和AIN2)。如果再使用另一个大小和前一个电流源大小相等的电流源。那么该电流源在RL2也将产生一个误差电压,其大小和RL1的误差电压大小相同,方向相反,从而可保证AIN1和AIN2输入端的误差电压为零,即不受引线电阻的影响。图3中的参考电压是由一个电流源(200μA)在 12.5kΩ电阻的压降提供的,这样设置能保证ADC获得更精确的比率结果。
4线RTD应用电路如图4所示。该图与3线RTD线路唯一的区别是测量输入端AIN1和AIN2没有引线电阻产生的误差电压。电流源OUT1能够给RTD提供一个激励电流,而电流源 OUT2提供的电流,在电阻RREF可产生一个参考电压供调制器使用。在4线RTD应用电路中,模拟输入电压里的RTD温度误差是由于RTD电流源温漂产生的,它可以利用改变参考电压的方式进行补偿,从而使输入端AIN1和AIN2的误差电压达到零。
5.2 与单片机的接口电路
由MAX1403 和单片机68HC11组成的接口实际线路如图5所示。从图5中可以看出,该接口电路非常简单,是花纲单片机I/O口较少的一种。当单片机具有一个硬件 SPI(串行外设接口)时,就能使用三线接口,并与MAX1403直接相连。SPI硬件在SCLK上产生8个脉冲就能在一个引脚上移入数据,而在另一个引脚上移出数据。
为了获得最佳效果,可使用一个硬件中断来监视INT引脚和采集新数据(硬件中断有效时)。如果硬件中断无效或中断执行时间比选择转换速率时间长,可使用SYNC位来防止测量时从数据输出寄存器中读出数据。
MAX1403 的另一种接口电路如图6所示。从图中看出,该接口电路所耗费的单片机I/O口更少,线路更简洁。全体单片机的I/O引脚均可与MAX1403接口。如果一个双向中开漏I/O引脚有效,即可把DOUT和DIN相连,从而进一步降低接口引脚数。要使用MAX1403三线接口,图中CS引脚必须接地。
5.3 4~20mA变送器
由MAX1403 和μC/μP及DAC等电路组成的4~20mA变送器如图7所示。这是一种低电压、单电源供电、易与光耦合器接口的变送器,其性能非常良好。变送器从 4~20mA环路中得到功率(能量),从而使变送器电路的电流被限制在4mA。如果把环路电流的容限进一步限制在3.5mA,那么变送器仍然可将环路电流保持在3.25mA,因为MAX1403本身消耗电流为250μA(0.25mA)。
6 印刷电路板和元件装接中的问题
为了使ADC获得最佳的性能,必须使用模拟地和数字地分开的印刷电路板。在印刷电路板的设计中,特别要注意地线的布置。通常把模拟地和数字地独立设置在各自电路中,然后把模拟地和连到一点(星号标志)。如果系统中只有一片MAX1403,那么可把该片的AGND和DGND引脚一起连到地平面;如果系统中有多片MAX1403,那么可把多块芯片的AGND和DGND引脚相连,尔后连到一个公共点,而这个公共点应尽量靠近MAX1403的星形地。 数字地严禁设计在芯片下面,因为这样会把噪声耦合给芯片,从而影响ADC正常工作。但是应当使模拟地在芯片下面运行,因为这样能减少数字噪声的耦合。MAX1403的电源引脚输入线应尽可能宽,以提供一个 低阻抗通道,从而降低电源线上脉冲的影响。
由于MAX1403是高分辨率的ADC,因而电源的耦合电路尤为重要。因此在印制电路板设计时,应对所有的模拟电源输入都加一级去耦电路,即用10μF锂电容和0.1μF陶瓷电容并联到地。而这些却耦电路的元件应尽可能靠近芯片的电源引脚,这样才能获得更好的去耦效果和消除因引线过线而带来的干扰。