《电子技术应用》
您所在的位置:首页 > 通信与网络 > 设计应用 > 射频光传输设备及其在核电磁脉冲防护中的应用
射频光传输设备及其在核电磁脉冲防护中的应用
电子产品世界
袁海兵 总参通信部驻成都地区军事代表室 毛建 绵阳灵通电讯
摘要:   20世纪80年代后期,号称“电磁杀手”的电磁脉冲炸弹问世了。这种炸弹爆炸后产生的高强度电磁脉冲,覆盖面积大,频谱范围宽,几乎能够攻击其杀伤半径内所有带电子部件的武器系统。它产生的强电磁脉冲可以通过暴露在地面上的天线、馈线等设备产生感应电流,破坏地下防护工程内的电子通信设备,瘫痪整个通信系统。通过近年来发生的几场高技术条件下的局部战争,我们可以看到,电磁脉冲炸弹已投入实战使用,并已成为控制信息权的“杀手锏”,严重地威胁到无线通信的发展。如何提高抗电磁摧毁能力已是各国在通信发展中遇到的一个严峻问题。
Abstract:
Key words :

     引言
 
    20世纪80年代后期,号称“电磁杀手”的电磁脉冲炸弹问世了。这种炸弹爆炸后产生的高强度电磁脉冲,覆盖面积大,频谱范围宽,几乎能够攻击其杀伤半径内所有带电子部件的武器系统。它产生的强电磁脉冲可以通过暴露在地面上的天线、馈线等设备产生感应电流,破坏地下防护工程内的电子通信设备,瘫痪整个通信系统。通过近年来发生的几场高技术条件下的局部战争,我们可以看到,电磁脉冲炸弹已投入实战使用,并已成为控制信息权的“杀手锏”,严重地威胁到无线通信的发展。如何提高抗电磁摧毁能力已是各国在通信发展中遇到的一个严峻问题。

    电缆传输和光纤传输衰耗与距离的比较

    与电缆传输相比,光纤传输具有无电磁辐射、传输带宽宽、不受电磁脉冲干扰、传输损耗小等特点。 采用光纤传输方法代替传统的电缆传输方法,具有以下优点。

    增强无线通信设备抗电磁毁伤能力。由于光纤是绝缘体,光纤代替金属线,切断传导性耦合通路,防止强电磁脉冲产生的感应电流破坏通信工程内的相关通信设备。

    采用光传输使天线能够远距离使用。一般电缆传输方法最大传输距离约500~1000m,光传输方法最小可达25公里,实现无线通信远距离隔离保护。

    大大减小信号传输过程中的衰耗(见表1),提高通信接收信号质量。

    射频信号光传输系统

    射频信号光传输的基本组成如图1所示。在发送端,射频信号通过射频信号放大、滤波等(具体根据实际需求处理),再通过电光转换,将射频信号转换成光信号在光缆中传输;接收端接收光信号,首先进行光电转换,将光信号转换成电信号,通过放大和滤波处理后输出射频信号。

    光发射设备

    在激光发射机中,激光器的性能好坏决定了发射机的性能好坏,因此对激光器的线性要求特别苛刻:

    (1)要求激光器器件的自身噪声极低,动态范围要大。

    (2)系统使用的特殊环境要求设备适应性要强,也就要求激光器器件的温度适应范围要宽。

    (3)输入信号的特殊性要求激光器必须有很好的线性指标,即:CSO(组合二次)、CTB(组合三次)和C/N(载噪比)指标,避免自身的非线性产物的大量产生,影响系统工作稳定及对有用信号造成干扰等等。

    光发射机的核心是DFB激光器组件,此外还有电源、激光器偏置电路、功率控制电路、光检测电路(光检测器用于光功率检测与自动功率控制)。光发射机通过自动温度控制(ATC)、自动光功率控制(APC)电路稳定输出光功率;信号输入后采用宽带放大,然后通过光调制技术将射频信号转换为光信号(见图2)。

此内容为AET网站原创,未经授权禁止转载。