《电子技术应用》
您所在的位置:首页 > 测试测量 > 设计应用 > IEEE802.16-2004 WiMAX物理层测量
IEEE802.16-2004 WiMAX物理层测量
老古开发网
安捷伦
摘要: 802.16-2004标准描述了四种不同的空中接口。其中一种接口标准是针对NLOS,RF频率小于11GHz和距离达到30km的无线通信而优化的。虽然标准把这一物理层正式命名为 WirelessMAN-OFDM,但许多人都把它称为WiMAX空中接口。该空中接口的基本特性是256载波OFDM,带宽范围为1.25- 20MHz,载波频率最高达11GHz。
Abstract:
Key words :

  802.16-2004标准描述了四种不同的空中接口。其中一种接口标准是针对NLOS,RF频率小于11GHz和距离达到30km的无线通信而优化的。虽然标准把这一物理层正式命名为 WirelessMAN-OFDM,但许多人都把它称为WiMAX空中接口。该空中接口的基本特性是256载波OFDM,带宽范围为1.25- 20MHz,载波频率最高达11GHz。

  一、WiMAX空中接口

  WiMAX 系统可配置成使用1.25MHz至20MHz的任何带宽;无论带宽多宽,符号始终包含200个载波。因此窄带宽系统子载波的间距很近,从而提供相对长的符号周期(符号周期定义为1/子载波间距)。这些间距很近的子载波和长符号有助于克服诸如多径之类的信道损伤。长符号周期是WiMAX系统与无线局域网系统(相对短的符号)的关键差别,使WiMAX对于长距离和NLOS应用有著明显的优点。

  WiMAX空中接口中的基本OFDM符号基于256点FFT。类似其它OFDM系统,256个子载波中有一部分作为保护频段(不使用),中心频率也不使用,因为它对RF载波的直馈非常敏感。WiMAX中实际只使用200个子载波。这200个载波的分配是192个载波用于数据,8个载波用于导频(见图 1)。导频载波始终为BPSK调制,数据载波则为BPSK、QPSK、16 QAM或64 QAM。

                          

                                        图1. OFDM子载波

  WiMAX 系统可部署为TDD、FDD或半双工FDD。图2示出TDD配置中的一个典型帧,这里基站和用户设备以相同RF频率发送,用时间分隔。基站发送链路">下行链路子帧,接著是称为发送/接收转换间隙(TTG)的短间隙,然後是用户发送上行链路子帧。各用户间有精确的同步,因此它们的发射信号在到达基站时不会重叠。在所有上行链路帧後和基站能再次发射前,有另一个称为接收/发送转换间隙(RTG)的短间隙。

  注意各个上行链路子帧前面是一个前置码。它被称为“短前置码”,它允许基站与每个用户同步。让我们进一步看下行链路,下行链路的子帧始终由前置码开始,接著是报头,然後是一个或多个数据突发。这些下行链路突发通常由多个符号构成。每一突发内的调制形式是固定的;但不同突发可能有不同的调制类型。要先传输如 BPSK和QPSK等高抗扰性调制类型的突发,接著是抗扰性稍差的调制类型(16和64QAM)。包含所有4类调制的下行链路子帧的次序为∶BPSK, QPSK, 16 QAM和64 QAM。
                           

                                        图2. 下行链路和上行链路子帧

  在上行链路和下行链路上的每一次传输始终从前置码开始。该前置码允许接收机与发射机同步,并用于信道评估。下行链路传输由长前置码开始。长前置码(图3)由两个QPSK调制符号构成。第一个符号使用200载波中的50个载波(每第4个子载波),第二个符号使用200个载波中的100个载波(所有偶数号的子载波)。这些前置码符号的发送功率比下行链路子帧中的所有其它符号高3dB,使接收机更易于接收,以进行正确的解调和解码。在各上行链路突发的开始处使用 “短前置码”。该短前置码是使用100个QPSK载波的一个符号(所有偶数号的子载波)。当使用包含许多符号的极长下行链路突发时,可能需要在下行链路突发间插入中同步码(短前置码)。该短前置码帮助接收机再同步,并提供附加的信道评估。

 

  跟著前置码的是帧控制报头(FCH)。FCH由BPSK调制中的一个符号实现。该符号包含88bit的系统开销数据,它描述如基站ID这类关键系统信息,以及接收机解码子帧所需要的下行链路突发信息。FCH所包含的信息虽然对于全面描述网络或下行链路是不够的,但足够使接收机能够开始解码下行链路突发。

  下行链路突发包含用户数据和控制消息。每一个下行链路突发都包含一个或多个符号。突发中的各符号包括12至108字节的有效载荷数据,字节数取决于调制类型和编码增益。表1示出7种不同调制类型和编码增益的组合。对于每种组合,各符号需要有规定数量的有效载荷数据。

                                   

                                                           图3. 长前置码

  编码过程是从有效载荷数据变成发送至IQ映射器的实际比特,如表1所示。在有必要时可填充比特,使有效载荷数据具有映射至整数符号的正确块大小。随机化器把该数据与?随机比特序列作异或运算,以得到某些1至0和某些0至1的反转。这样,随机化器就消除了有效载荷数据中1或0的长串。再增加一个用于Reed- Solomon和卷积编码的尾字节。这些编码步骤提供了前向纠错,在数字通信系统中是非常普遍的编码方法。这一编码增加了冗馀数据,以帮助确定和修复缺失或被破坏的数据。

  编码中的最後步骤包括在两个步骤中执行的交织。交织的第一步是重新排列比特次序,确保相邻比特不被映射至相邻载波。在部分信道带宽因某种类型的寄生或带内噪声而恶化时,这种方法能通过减少相邻比特丢失机会而避免错误。交织的第二步是再次对这些比特排序,使原来相邻的比特交替映射至IQ星座上或多或少的可靠点。在64 QAM这类复杂的调制中,每一个IQ点代表多个数据比特,其中一些比特比另一些比特更容易检测(因此也更可靠)。在交织後,编码比特被映射到IQ星座,从载波号-100开始,直至载波号+100。

表1. 调制和编码组合

  为简化发射机和接收机设计,FCH中的所有符号和DL数据突发以相同功率传送。由于这些符号使用四种不同的调制类型(BPSK, QPSK等),因此需针对每种调制类型进行调整,使各符号的平均功率大致相同。图5示出实际测量一个包含BPSK、QPSK、16QAM和64QAM符号的帧所得到的IQ星座图。图中示出各调制类型有不同的标度,因为各IQ点未排齐,因此有可能看到所有86个离散的IQ点(64QAM+16QAM+ 4QPSK+2BPSK)。这样的测量能通过幅度标度或IQ星座图帮助设计师迅速确定有问题的区域。前面曾讲过前置码突发比这些FCH和下行链路突发符号高3dB。该前置码被解码和用于信道评估,但在IQ星座图中未示出这些符号。

  

                          

 

图5. Agilent 89600对WiMAX下行链路帧的IQ测量

 

  二、RF特性

  系统的总体性能依靠仔细地定义和控制RF特性。在802.16-2004和“WiMAX认证”文件中定义了这些RF指标。Agilent提供各种用于验证该 RF规范不同部分的测试解决方案。这篇应用指南的下面部分讲述每一项RF发射机和和接收机测量,并详细介绍Agilent为每一项测量推荐的测试步骤和测试解决方案。应把这些推荐看作是指导方针,或是针对每一项需要的出发点。

  三、控制DUT

  虽然802.16-2004中定义了RF参数的测试条件,但该标准并未规定如何控制DUT。大多数设备制造商已实现了专门的DUT控制软件和DUT测试模式,它可控制发射机和接收机的工作,并独立于正常系统工作期间所使用的MAC和协议控制。这些专门的测试模式为可重复测量做了优化,它能快速执行,而没有通过常规MAC/协议操作建立链接和控制空中接口的不必要开销。

  四、发射机测试

  IEEE 802.16-2004中的8.3.10和8.5.2项规定了发射机要求。这些测试包括∶

·8.3.10.1 - 发射功率级控制;
·8.3.10.1.1 - 发射机频谱平坦度;
·8.3.10.1.2 - 发射机星座误差;
·8.5.2 - 发射频谱模板(对于未许可频段的工作)。

  其它一些关键的发射机测量,如ACPR,最大输出功率,杂散和谐波在802.16-2004标准中未作规定,而把它留给设备将部署地区的“地区规章”。

            

                                       图6. 发射机测量的典型连接图

  1、发射机功率级控制

  基站和用户设备必须能在一定范围内调整其输出功率。基站至少要有10dB的调整范围,所有用户设备至少要有30dB,支持子信道化设备至少要有50dB的调整范围。在此范围内的步长最小值须为1dB,所有小于30dB步长的相对精度为±1.5dB,更大步长的相对精度为±3dB。

表2. 发送功率级控制的指标

  (1)推荐的RF测试设备

  Agilent E4440A PSA系列频谱分析仪和配置选件B7S WiMAX分析软件的89600系列矢量信号分析仪(VSA软件)。

  (2)Agilent测试设置

  对于这项测量,要把DUT设置到各种输出功率。用RF测试设备精确测量各DUT功率设置的相对功率。
·把DUT设置为发送有效功率,其帧结构有正确的前置码和数据突发;
·使用推荐的测试设备,测量和记录DUT数据突发的输出功率;
·重复第2步,仔细观察功率放大器开关的通断点(PA接通或断开处的功率级)。把测量数据与该设备预期输出功率相比较。

  (3)使用带WiMAX分析软件Agilent 89600 VSA的考虑

  如图7所示,VSA软件提供帧中各突发的功率测量结果。显示中示出对前置码、FCH和各数据突发的功率测量结果。为提高精度,应使用包含许多符号的突发。它提供大量样本的平均。

             

                                        图7. 下行链路子帧功率测量

  (4)测试考虑

  所发送的信号很有可能是跟著前置码的数据突发。发送的前置码符号功率要比数据突发高3dB。由于帧中有幅度变化,为保证进行正确的测量,有一些需要注意的事项。在进行参考测量时,分别记录前置码的功率和数据突发的功率。然後当改变信号输出电平时,分别将新的前置码功率和数据突发功率与原参考测量比较。 802.16-2004标准未明确定义用发送信号的哪一部分进行此项测量,但由于这是相对测量,因此只要参考测量正确,该测试就有效。

此内容为AET网站原创,未经授权禁止转载。