0 引 言
目前由于对光感器件的测试大都依赖于全手工完成,不仅测试效率低,而且测试过程的精度以及测试数据的可靠性都不能得以保证。
根据现状,设计了一套针对光感信号测试的智能型信号采集分析系统。在设计该系统时充分考虑其使用的稳定性,可靠性以及可维护性,特别是对系统故障自诊断方面进行了强化,这里将针对该系统的原理结构进行论述。
1 自动数据采集分析系统
在现有常见工程中,数据采集分析系统一般必须包含两个模块:数据采集模块和数据分析模块。
数据采集模块的任务是按照工作人员预先设计好的顺序以及指定参数进行数据的自动采集,并且进行存储以便被数据分析模块调用。数据采集模块一般包括硬件部分和软件部分:硬件部分包括采集过程所需要的测试仪器以及采集模块控制电路设计,而软件部分则包括测试系统的驱动以及信号采集过程的软件设计。
数据分析模块的任务是调用数据采集模块采集完成的数据进行各种数据分析,包括数据比较,数据查询,报表的生成和打印等功能。
2 光感器件
光感器件的作用是能够将光信号变成电信号。光感器件按探测原理可分为两类:热探测型和光子探测型。热探测型首先将光信号的能量变为自身的温度变化,然后再依赖于器件某种温度敏感特性将温度变化转变为相应的电信号。光子探测型基于光电效应原理,即利用光子本身能量激发载流子,响应速度快灵敏度高,使用最为广泛。
3 针对光感器件设计的数据采集分析系统
3.1 系统的需求分析
针对光感器件测试过程所需要达到的精度,设计自动数据采集分析系统。通过本系统希望大大提高测试效率并保证测试的可靠性、稳定性和可维护性。
3.2 测试的对象
本系统所测试的对象为八象限光电二极管,该器件具有的特点:象限呈轴对称且中心对称分布,感光区域(所需要测试的部位)有8个,分别为内四象限和外四象限。内四象限感光面较小,而且感光层分布不均匀,测试难度高。外四象限感光面较大,而且感光层分布均匀,测试难度低。
对该器件的测试过程是:将一定波长的激光光源照射该器件,分别在找到八个象限内相应感应最大的测试值作为测试数据,所需要测试不同的数据可以通过控制采集模块内部电路以及控制采集参数来完成。
3.3 系统的基本原理
系统的基本原理如图1所示。
通过数据采集模块得到测试数据,把测试数据存入系统数据库中。
有了测试数据,数据维护模块就可以进行数据的删除、修改、备份/恢复等维护工作。
数据打印模块完成对测试数据的打印工作。
数据分析模块通过设置测试参数实现数据显示。
系统设置模块实现系统正常运行的各种参数的设置。
该系统的基本需求首先是需要实现测试数据的采集,并能由采集数据通过计算公式计算出分析数据,最后把采集数据和计算数据一并存入数据库。
3.4 系统的环境
由于光感器件测试时对环境变化非常灵敏,因此将此系统设计在一个长宽高分别为:4 m×3 m×2.5 m的屏蔽室中,将自然光、电磁干扰、人为因素对测试过程的影响减到最小程度。
3.5 系统的硬件设计
考虑到对被测试器件所需的激光光源位置需要固定,系统的硬件框架设计如下:由3台具有高灵敏度的步进电机带动构成三维移动平台,被测器件固定在该平台上。通过示波器返回光电器件的输出,由软件程序找到某一象限内的感光最大值。通过串口将控制命令代码传给控制电路的单片机,并由单片机来改变不同的测试条件进行测试。系统硬件框图如图2所示。
由于光感器件测试时所要求的高灵敏度,采集模块硬件需要很高的精度。本系统应用北京卓立汉光仪器有限公司生产的SC300系列步进电机控制箱,设计出一套xyz三轴可控系统。x轴采用TSAx一(A)系列标准型电控平移台,分辨率达到1.25μm。y轴采用TSAx—C系列超薄型电控平移台,分辨率达到了O.625μm。z轴采用TSAV60—1S电控升降台,分辨率达到了O.01mm。三个轴的精度都达到了测试要求。
采集模块的核心工作由一块51系列单片机来完成,当采集系统根据用户要求到达需要测试处,单片机负责切换测试的通道,以及测试采集数据。
3.6 系统的接口设计
为了实现数据采集、数据的存储、分析处理功能,有必要实现一套数据采集并存储、分析处理和查询的软件系统,基本的方法是通过PC与TDS3000示波器连接得到采集数据,并储存到数据库进行分析处理。
本系统运行于Windows系列操作系统平台之上,需要PC和测试仪器TDS3000之间进行连接,并且安装仪器所带的相关设备驱动。硬件的连接方式是使用PC的以太网口和TDS3000的以太网口相连接。通过使用测试命令,可以使测试软件方便地得到测试仪器的采集数据。