在测量温度、压力、流量和姿态等真实世界中的物理参数时,往往必须从许多信号特性差异很大的换能器中提取数据。这些换能器所产生的信号可能包括高压、低压、电流、频率或者脉冲数据,而每一种信号都会为工程师的测量带来一系列独特的挑战。其中,温度是迄今为止最常被测量的参数,热电偶则是在温度测量应用中最主要的测量设备。
热电偶的物理特性对用户的使用提出了许多独特的挑战。首先,必须将它产生的低电平信号放大,然后还要滤除其中的高频分量和噪声,同时,还必须小心降低邻道的干扰。很明显,要保证热电偶测量的结果准确并可重复,信号调理是十分关键的一环。
热电偶换能器在两片异金属相互接触时产生一个低电平的电压,该电压通常被称作温差电动势,信号强度在毫伏级。例如,一个满幅工作范围约为60mV的K型热电偶在1°C下会产生39uV的电压。典型模数转换器(ADC)的输入电压范围一般为±10V,因而为了获得最佳电压分辨率,就必须将信号电平放大。
图1:高精度热电偶和高速电压测量。 |
放大级的作用就是保证将信号放大到即使十分精细的温度变化都能被分辨出来的程度。当增益为100时,一个K型热电偶在1200°C时的测量结果(48.838 mV)将被放大到4.8838 V。如果没有经过这一必需的放大环节,测量结果的分辨率就会大大降低,也更容易受噪声波动影响。
模拟滤波
热电偶输出的毫伏级信号也很容易受60Hz干扰的影响,因此仪器必须提供很好的带宽限制才能对抗这种干扰。这一点在工业环境下尤其重要,因为在工业环境下,热电偶暴露在发动机、发电机、焊接设备、照明设备等干扰源产生的严重电子干扰之下。
诸如基于DMM的系统之类的许多热电偶测量设备都能提供一定程度的可编程60Hz滤波能力,但这种带宽限制是通过设置ADC的积分速度来实现的。通过在整数个公频周期(power line cycle, PLC)上积分,能够改善60Hz滤波的性能,降低60Hz噪声的影响,但却会严重降低通道采样率。而且由于60Hz滤波设置是一个全局设置,即便只有一个通道需要60Hz滤波,系统中所有通道都只能按照降低了的速度采样。
那些显然是用于降低成本的基于PC的中继多路设备(relay multiplexer)通常并不提供任何模拟滤波,而是依靠平均的办法或者其他软件技术来处理数据。在测量频谱内需要获得十分准确和干净的数据时,这种处理方式就会产生问题,这时若想提高信号完整性,就必需添加额外的外部滤波电路。
真正领先的仪器设计师们并不会依靠ADC,也不靠软件过采样和平均技术,而是在每个通道的信号调理通路上提供带宽限制,这样就能独立设置每个通道的截止频率。
有一种灵活的方法(例如在VXI技术公司的EX1048中采用的方法),能对不同通道设置不同的截止频率范围,即在4 Hz带宽和1kHz带宽之间作出选择。4 Hz适合大多数热电偶和低电压测量,它对60 Hz的滤波性能最好;1 kHz则适合高精度热电偶和高速电压测量(图1)。
冷端补偿(Cold Junction Compensation)
在高精度温度测量中,滤波抗噪和信号放大只是其中的一部分。事实证明,冷端补偿(CJC)电路才是高精度热电偶的核心。即使是热质量很大的隔热模块,其温度也会缓慢随周围环境同向变化,因此如果过低估计或者不能正确处理这些效应,那么测量误差就在所难免。
PC卡多路器和基于DMM的系统测量精度通常约为1.0°~1.5°,这个精度范围所表达的不确定性源于多种原因,其中包括隔热模块热质量过低, CJC传感器位置错误或个数不足,终端模块与相邻热源(例如电源)的相对位置不佳,以及显示的问题。另外,大多数仪器中测量误差过大都归因于CJC传感器电路设计不佳和CJC输入的热耦合机制不良。
象EX1048这样的精确测温仪器通常都结合了多种高精度的CJC机制,具有较大的热质量,产生内部温度梯度的部件放置位置考究,而且还具备自校准功能。CJC传感器通常采用高精度热敏电阻,这些传感器往往放在隔热模块上的关键位置处。当系统中通道个数较多时,带热敏电阻的隔热模块数目也会增多,以消除不同连接点之间的温度测量造成的误差(图2)。注意了这些细节之后,仪器的系统级测量精度就可能达到0.2°C到0.4°C。
图2:当系统中通道个数较多时, |
信号多路化
当信号经过了良好的滤波和放大,而且得到的CJC信号也很精确时,从信号调理的角度来看,ADC仍可能对测量的精确性造成严重影响。由于采样要求相对较慢,大多数测温仪器都不会在每个通道上采用一个单独的ADC,而是通过一个多路器配置使多通道共用同一个ADC,典型的通道配置数目有16、32、48和64通道。因此就需要在仪器中添加高速固态多路器电路。
热电偶信号的大小只有毫伏级,当硬件设计不佳时,这一性质就会带来系统级的问题。如果与热电偶通道相邻的通道上产生了高电平或过载条件,那么在热电偶通道进行测量时就会产生错误。出现这种情况的原因可能是线路上的寄生电容和电荷,而用户可能根本无法了解这一情况。如果硬件设计无法处理这类典型的问题,就只能要求用户在一个通道上多停留一段时间,先过采样然后再平均,这样得到测量结果。
高质量的热电偶测量仪器则无需依靠过采样和软件平均来得到一个留有裕量的测量结果。EX1048(图3*)的设计采用了每通道独立滤波和放大的方法,将通道与通道的运行隔离开来。这样,送至ADC的信号和由多路器来的信号都不会产生干扰。这类设计就能保证不论相邻通道是否可能出现过压或过载情况,ADC转换得到的数据对每个通道都是有效的。
本文小结
热电偶测量是一种十分普通也很常见的测量,正因为如此,许多仪器厂商往往都忽略了基础信号调理的重要性。于是,终端用户就不得不扛下这一包袱,提供外部信号调理和冷端补偿设备,结果往往造成测量系统成本过高也过于复杂,而且长期维护和系统校准也会受到影响。
内部信号调理是精密热电偶仪器设计(例如EX1048)中的一个关键问题,它与开放式热电偶监测和自校准功能等特性紧密相关。一台热电偶测量仪,如果具备这样全面的功能,就能简化设置和调试操作,避免出现由外部互连电缆引发的问题,并按需提供完全的现场校准。热电偶测量应用有很多种解决方法,但采用一台集成好的仪器来完成测量才是能够降低成本和简化实现的方法。