"使用NI数据采集和数据流盘硬件,我们为DSSM和DOMT开发了标定和校正算法,相比使用实时硬件信号处理实际问题,我们的处理方法更有效、成本更低。"
美国国家射电天文台(NRAO)是美国国家科学基金会(NSF)资助的机构,负责美国和世界各地天文学家使用的射电天文设备的建造、维护和运作。中央开发实验室(CDL)是NRAO的主要研究和开发团队。
突破性的射电天文研究依赖于低噪声接收器和宽带数据传输系统。尽管这些系统在成本、重量和尺寸上都更小,但是比目前的高端系统更可靠、可重复性更高,而且无需牺牲灵敏度。
数字边带分离和极性隔离
下一代射电仪器需要尽可能接近地对天线馈电进行数字化,并且将射频至基带转换、模拟至数字转换以及铜导线至光纤转换集成在一体。这包含将部分功能从模拟域转换到数字域,从而可以以最高的保真度进行信号处理。
自然决定了射电天文学家研究信号的频率、带宽和时域特性,需要比大多数商业应用具有更宽微调范围和更大瞬时带宽的接收机。此外,从通信标准而言,宇宙信号非常微弱,因此分离带外信号十分重要。直到最近,出现了复杂的下变频系统,它带有多个本地振荡器和中间滤波器,让低级散射混和产品分解频谱,特别是在高度集成的接收器上。更简单的单一下变频、边带分离解决方案都不可行,因为为中频(IF)实现高带宽混和耦合器十分困难,相对受限制的边带分离导致低于20 dB宽带宽。为了避免这个问题,我们使用数字边带分离混和器(DSSM)避免模拟IF混和系统。DSSM对相内进行数字化并独立对混和器输出进行正交化,数字化地完成更高或更低带宽的最终重建,因此我们可以创建数学上完美的IF混和系统,校正在前置模拟数字中的任何幅值和相位失衡。
另外,对于射电天文学而言,比较独特的是需要测量随机极化信号的部分极化,通常极化低于1%。在传统系统中,成为直接式收发转换器(OMT)的被动电磁设备插入在天线和第一个低噪声放大器之间,将信号的正交部分分解为两个独立输出。尽管这些设备的性能很好,但它们比较笨重,难以封装,降低了效率,限制了它们在高集成紧凑接收器中的使用。数字正交模转换器(DOMT)和DSSM一样避免了这个问题。
使用基于NI PXI的数据采集和流盘技术的算法开发
最后,将边带和极化重建所需的信号处理算法编程到现场可编程门阵列(FPGA)固件中,实现实时运行。但是,标定和处理算法需要更广的开发和测试。因此,我们需要足够灵活的系统,对多个接收器概念进行原型开发,并使用不同算法重复比较相同数据的后期处理,同时仍然对八个通道高速同步采集大量数据。NI HDD-8263与PXI数据采集模块结合在一起可以满足这些需求。
对DSSM的初始测试,我们使用工作在500 MS/s的NI PXI-5152双通道采样器,采集相内和1250到1650 MHz前端的正交输出。我们使用带有1 TB存储容量的NI HDD-8263 RAID流盘系统,对数据进行缓存和存储。最大128 MB缓存以128 ms突发记录数据。这为数字校正系数标定和超过60 dB的边带分离测量提供了足够的信噪比。
带有四个DSSM接收机的8到12 GHz DOMT的后续测试使用相同的NI HDD-8263系统存储数据。在设置中,我们使用工作在60 MS/s的NI PXIe-8105八通道采样器。每个通道从模拟硬件的四个极化向量采集相内或正交相位成分。在这个例子中,以1.08 s突发记录数据。
通过将数据用流盘技术传送到磁盘,用软件对结果进行后期处理,我们在完成复杂昂贵的FPGA实现之前,对算法进行微调以得到最佳性能。
结果
我们使用NI数据采集和数据流盘硬件,相比使用实时硬件信号处理实现而言,我们更有效、成本更低地为DSSM和DOMT开发标定和校正算法。我们开发的算法和校正参数十分强大、精确并且在不同温度下稳定。DSSM原型系统在单一标定之后实现了在12 °C温度变换范围内高于50 dB边带隔离,同时一次采集整个L频带(1250至1650 MHz)。两个DOMT原型系统、三探头和四探头版本实现了在10 °C温度范围内,一次标定实现高于50 dB的极化隔离,同时采集9 GHz附近的60 MHz宽带。
有了这些结果,我们有信心在更大带宽下用FPGA硬件实现实时算法。