《电子技术应用》
您所在的位置:首页 > 电源技术 > 设计应用 > 基于并联技术的三相功率因数校正方法研究
基于并联技术的三相功率因数校正方法研究
摘要:  三相PFC整流电路遇到的一个很大的难题就是三相之间的耦合,上述各种方法已分别对此难题进行了相应的解决。每相分别加隔离DC/DC的做法虽然可以解决此问题,但其代价就是使电路所用的器件增多。隔离电感和隔离电容的加入可以对耦合加以抑制,而且在中小功率场合也有一定的实用价值。通过矩阵变换器实现的电路解决了这一技术难题,三个单相PFC独立性比较强,输出之间相互电气隔离。当然代价也是使用器件相对较多。但是考虑到由单相PFC实现三相PFC的种种优势,上述各种方法还是有一定应用前景。
Abstract:
Key words :

  引言

  电力电子装置的广泛应用,给公用电网造成严重污染,谐波和无功问题日益受到重视。为了减轻电力污染的危害程度,许多国家纷纷制定了相应的标准,如国际电工委员会的谐波标准IEEE555—2和IEC—1000—3—2等。功率因数校正(Power Factor Correction,简称PFC)技术,尤其是有源功率因数校正(Active Power FactorCorrection,简称APFC)技术可以有效的抑制谐波,已成为研究的热点。

  单相APFC技术的研究比较成熟,已有不少商业化的专用控制芯片,如UC3854,IRll 50,LTl508,ML4819。与单相功率因数校正整流装置相比,三相PFC整流装置具有许多优点:(1)输入功率高,功率额定值可达几千瓦以上;(2)单相PFC整流装置输入功率是一个两倍于工频变化的量,但在三相平衡装置中,三相输入功率脉动部分的总和为零,输入功率是一恒定值,三相PFC整流装置输出功率的脉动周期仅为单相全波整流的三分之一,脉动系数低,因此可以使用容量较小的输出电容,从而可以实现更快的输出电压动态响应。

  三相APFC技术正成为众多学者研究的重点,但其实现有一定的困难,而且还未见成熟的专用控制芯片。若能将单相APFC电路简单整合成一个三相APFC电路,将能充分利用成熟的单相控制芯片,制作出满足要求的三相APFC装置。

  1 由单相APFC组合成三相APFC的几种方法基于并联技术的三相功率因数校正方法研究

  图片看不清楚?请点击这里查看原图(大图)。

  单相PFC组合成三相PFC的技术优势是:(1)无需研究新的拓扑和控制方式,可直接应用发展比较成熟的单相PFC拓扑,以及相应的单相PFC控制芯片和控制方法;(2)电路由多个单相PFC同时供电,如果某一相出现故障,其余两相仍能继续向负载供电,电路具有冗余特性;(3)由于单向模块的使用,因此需要更少的维护和维修,而且有利于产品的标准化;(4)与三相PFC相比,不需要高压器件等。

  下面将对由单相PFC实现三相PFC的几种方法分别进行介绍。

  1)由三个分别带隔离DC/DC变换的单相PFC并联组成的方法

  每个单相PFC后跟随一个隔离型DC/DC变换器,DC/DC变换器输出端并联起来,形成一个直流回路后向负载供电,如图l所示。此类电路即可采用三相三线制接法,也可用三相四线制的接法,很灵活且很简单。而且此类电路都可设计成单级形式,从而减少功率等级且动态响应比较快。但该类电路由三个完全独立的单相PFC及DC/DC变换器组成,由于需3个外加隔离的DC/DC变换器,因此用的器件比较多,成本较高。

  (1)单相PFC电路由全桥电路构成

  图2电路的特点是DC/DC的开关控制比较简单,相对于其它电路更适合于大功率场合的应用。但是由于隔离变压器反射电压的影响,全桥电路相对于反激电路来说有更高的电流失真。

基于并联技术的三相功率因数校正方法研究

  图片看不清楚?请点击这里查看原图(大图)。

  (2)单相PFC电路由Buck电路构成图5 用三个单相Buck变换器组成的三相PFC示意图图3所示Buck型电路的结构比较简单,同全桥电路相似,

  由于隔离变压器反射电压的影响,其相对于反激电路来说也有较大的电流失真,但其谐波仍可以限定在比较低水平,达到IEC—1000的要求。另

  外,其可实现的功率等级的大小不如全桥高,但比反激式电路要大。

基于并联技术的三相功率因数校正方法研究

  图片看不清楚?请点击这里查看原图(大图)。

  (3)单相PFC电路由反激电路构成

  图4所示反激式电路有比较接近正弦的相电流,而且功率因数也更接近于单位功率因数。由于其本身的结构特点,所以不必以增加电压为代价即可达到隔离的作用。但相对于前两种电路其功率不容易做大。

基于并联技术的三相功率因数校正方法研究

  图片看不清楚?请点击这里查看原图(大图)。

  (4)单相PFC电路由SEPIC电路构成

  在Boost变换中,传统的隔离在此种情况下的应用并不理想,因为在电流连续情况下,器件将产生高的电压应力,在电流断续情况下将产生较大的输入电流失真。

基于并联技术的三相功率因数校正方法研究

  图片看不清楚?请点击这里查看原图(大图)。

  图5所示的电路是用隔离SEPIC电路组成的三相PFC电路,SEPIC变换器的输入端类似于Boost电路,因此具有Boost电路的优点,如有低的输入电流失真和更小的EMI滤波器。在输出端SEPIC电路像反激式变换器,从而不必以增加电压为代价达到隔离的作用。

  2)由三个单相PFC在输出端直接并联组成的方法

  图6是将3个单相PFC变换器在其输出端直接并联而成的,因此结构相对较简单。由于该电路是三个单相。PFC变换器在输出端直接并联而成的,各相之间存在较严重的耦合。下面给出一种其相应的电路,如图7所示,电路中三个单相PFC之间存在相互影响,即使加入隔离电感和隔离二极管后也不能完全消除这种影响,导致电路的效率和输入电流THD指标有所下降,所以在大功率场合很少应用,但在中小功率场合有一定的使用价值。

基于并联技术的三相功率因数校正方法研究

  图片看不清楚?请点击这里查看原图(大图)。基于并联技术的三相功率因数校正方法研究

  图片看不清楚?请点击这里查看原图(大图)。

  图9是其一种实际的应用电路图,工作原理是,三相输入电压Ua,Ub,Uc(相位相差120°)。通过带有中心抽头的变压器变成两相电压Uab和Uck(相位相差90°),Uab和Uck。的矢量图如图10所示。

  通过这样的变换,就变成两个三相单开关PFC的并联。尽管|Uab|≠|Uck|,但采用适当控制可以使两个电路平分输出电压,这一特性能够抵

  消电容中的低频纹波,从而有效地减少电容的温升,延长电容的寿命。因为每个电路独立工作,所以两个功率开关的开通和关断互不影响。不足是不能在整个负载范围实现功率因数校正等。

  4)由矩阵式DC/DC变换器构成的方法

  新颖组合式三相APFC拓扑结构示意图如图11所示,该电路由三个单相PFC电路组合而成,与前面所介绍的三相组合式PFC电路极其相似,不同点在于,该电路中三个单相PFC的输出并不是直接将三个单相直流输出电压并联,而是通过高频矩阵式功率变换器,使三个单相PFC直流输出耦合成一路直流输出。该电路的关键在于引入了矩阵变压器技术,充分利用了矩阵变压器磁耦合原理。其等效电路图如图12所示。

基于并联技术的三相功率因数校正方法研究

  图片看不清楚?请点击这里查看原图(大图)。

  三个单相PFC经逆变后的交变电压相位、频率、幅值相同,通过三相矩阵高频变压器的耦合、变压及隔离,输出所需要的直流电压。三个单相PFC独立性比较强,输出之间相互电气隔离,解决了三个单相PFC之间相互影响的图12利用矩阵变换器实现的等效电路图这一技术难题。

 

  2 结束语

  三相PFC整流电路遇到的一个很大的难题就是三相之间的耦合,上述各种方法已分别对此难题进行了相应的解决。每相分别加隔离DC/DC的做法虽然可以解决此问题,但其代价就是使电路所用的器件增多。隔离电感和隔离电容的加入可以对耦合加以抑制,而且在中小功率场合也有一定的实用价值。通过矩阵变换器实现的电路解决了这一技术难题,三个单相PFC独立性比较强,输出之间相互电气隔离。当然代价也是使用器件相对较多。但是考虑到由单相PFC实现三相PFC的种种优势,上述各种方法还是有一定应用前景。

此内容为AET网站原创,未经授权禁止转载。