《电子技术应用》
您所在的位置:首页 > 电源技术 > 设计应用 > 便携式应用设备电源设计的新趋势(三)【NI】
便携式应用设备电源设计的新趋势(三)【NI】
来源:电子技术应用2010年第8期
Jerry Han
美国国家半导体 资深产品工程师
摘要: 在开发电池直接供电设备(如手机、PMP、DSC)时,如果电源系统设计不合理,整个系统架构、软件设计和电源分配架构将受到影响。与此同时,在系统设计中,设计人员应更多地考虑如何节省电池电量,为了降低电池电流,当今的便携式产品处理器通常具有多种工作模式(待机、睡眠、深度睡眠),即当用户系统不需要全负荷运行时,处理器可进入较少功耗的低功率模式。
Abstract:
Key words :

(接上期)
3 高级电源管理装置PMU
    在开发电池直接供电设备(如手机、PMP、DSC)时,如果电源系统设计不合理,整个系统架构、软件设计和电源分配架构将受到影响。与此同时,在系统设计中,设计人员应更多地考虑如何节省电池电量,为了降低电池电流,当今的便携式产品处理器通常具有多种工作模式(待机、睡眠、深度睡眠),即当用户系统不需要全负荷运行时,处理器可进入较少功耗的低功率模式。
    从便携式产品电源管理的开发趋势来看,系统设计人员需考虑以下几个方面:高灵活性、高集成性和高效。解决这些难题的常用方法是选择一种具有可编程性的电源管理装置来管理电源系统。美国国家半导体推出的LP8720是一款非常智能且高效的电源管理解决方案,其尺寸为2.5 mm×2.0 mm×0.6 mm,微表面贴装组件(SMD)封装的多功能可编程电源管理装置。该设备集成有1个基于动态电压调节(DVS)的高效400 mA逐降DC/DC转换器、5个低噪音低压差(LDO)稳压器和1个400 kHz I2C可兼容接口。
    具有中断功能特性的LP8720将发出一个热关机预警中断信号并启动热关机。设备带有一个用来设置默认电压和启动顺序的控制输入DELSEL,且必须和电池(BATT)牢牢相连或牢牢接地(GND)、或让其浮接(Hi-Z),以作特定应用。当供电应用设备时,处理器LP8720用作子PMU,且可在待机模式下通过I2C首先对其进行编程(设置),以获得预期电压和顺序,这对不同的多媒体处理器相当有用。LP8720还带有另一个用来设置串行接口的从机地址的控制输入IDSEL,也必须和电池(BATT)牢牢相连或牢牢接地(GND)、或让其浮接(Hi-Z),以获得不同的I2C地址。
    如果LDO的负载电流和降压转换器负载电流的总和不超过5 mA,则用户可将LP8720设置成睡眠模式。在睡眠模式下,PMU的静态电流在降压转换器和LDO1启用的情况下将进一步降低至100 ?滋A。在睡眠模式下,LDO和降压转换器不可负载大电流。LP8720在两种情况下可进入睡眠模式:一种是通过串行接口来控制;另一种是通过DVS-插脚来控制。
    LP8720的降压转换器通过I2C和GPIO支持动态电压调节,这意味着系统设计人员可根据其偏好,使用I2C或GPIO来实现DVS。通过2 MHz的切换频率来使用2.2 ?滋H的小电感器。自动PFM/PWM开关保证降压转换器能在不同负载情况下高效工作。可通过选择外部反馈电阻器网络来设置降压转换器输出电压,如图1所示。可调节Vout来使FB插脚处的电压等于0.5 V。FB插脚至接地(RFB2)的电阻约为200 k?赘,这有助于让流经电阻器网络的电流保持在最小值,但仍足够大,不会受噪音的影响。对大于或等于0.8 V的输出电压,应通过附装电容器C1来增加零传递功能。

    在LP8720上共有5个LDO,分别为A型LDO(LDO 2,3)、D型LDO(LDO 1,5)、LO型LDO(LDO4)。A型LDO为供电模拟负载进行优化,且具有超低的噪音(15 μVRMS)和极佳的PSRR(70 dB)性能;D型LDO为良好的动态性能进行优化,以向快速变化(数字)负载供电;LO型LDO为低输出电压和良好的动态性能进行优化,以向快速变化(数字)负载供电。专门设计的LO型LDO可利用降压转换器的输出作为输入电压,以获得比传统线性调节器更高的效率。对于LDO,其具有10 μA的Iq。当Vin=1.8 V、Vout=1.5 V、Iout=150 mA时,可计算出LILO LDO效率如下:
   
    如果LILO使用3.6 V电池作为输入电源,则效率仅为42%。虽然降压转换器存在一部分效率损失,改进的结果仍相当可观。因此,该技术可将便携式应用设备的电池寿命最大化,并最大限度地减少热损耗。
(全文完)

此内容为AET网站原创,未经授权禁止转载。