最近整理书籍,发现一本笔记本。里面记录着当初电源入门的时候,调试过程中所看到的一些异常现象,以及后来的解决办法。可惜现在已经没有这个好习惯了,其实很多工程师认为设计电源是非常重经验的一门技术,要见多识广。我觉得这种经验,不但体现在设计中,更体现在调试的过程。当你一看到波形,就能把问题定位,那就是最高境界。接下来,我会把那些记录一点点贴上来,当然更希望网友也能在此贴里分享那些让你印象深刻的调试经验。
项目:UC3842控制电路学习板
现象:UC3842供电正常,但是Vref居然不是5V,而是高于5V。
解决办法:把管脚重新焊一遍。
分析:UC3842的GND脚焊接不良,导致电压浮起来了。
项目:某实验室一台电源坏了,拆开一看,UC3875控制的全桥,需要修理。
现象:初步检查,功率管坏了,由于没有同型号的管子,把所有的管子换成同功率等级的管子。上电之后,输入电压较低的时候,一切正常。当输入电压较高的时候,驱动混乱,频率抖动。
解决办法:把功率管的驱动电阻增大,该现象消失,一切正常,电源修好。
分析:新的管子寄生参数和旧管不同,在同样的驱动电路下,开关速度会比较快,导致干扰比较大,在高压的时候,干扰大到影响控制电路的工作。
项目:UC3845双管正激
现象:两个管子关断之后,DS所承受的电压非常悬殊,并非理论上的各自一半。猜测是 MOS的参数不一致导致,把上下管焊下来,交换位置,结果,还是一样。看来和MOS无关。
解决办法:调节两管驱动,让他们尽量同时关断,情况略有改善,但还是无法平分电压。
分析:这个应该是两个原因引起的,一个是PCB寄生参数的不同导致,两个位置的管子,DS的实际电容有差异。另外一个是,驱动不是很同步关断。
项目:UC3845控制辅助绕组反馈的反激
现象:主路输出电压在开机的时候有很大过冲。但是,参与反馈的辅助绕组的电压并没有过冲。
解决办法:为了可调节调整率,辅组绕组上串联了一个电阻。将这个电阻的阻值减小,主路输出过冲明显减小。
分析:由于反馈采样的是辅组绕组,而辅组绕组串联了一个电阻,导致启动的时候,辅组绕组的电压和反馈处的电压,有压差,通过变压器耦合,导致输出电压过冲
项目:NCP1014, 光藕反馈反激
现象:人家已经做过的成熟板子,重新焊了一块之后,发现输出稳压不对。
解决办法:自作聪明换了其他型号同等基准的431替换原来的bom中431,换回来就好了。
分析:原先用的是zetex的431,其最小工作电流是uA级别的,所以设计时基本没考虑最小工作电流。后来替换了TI的431,最小工作电流是1mA,导致工作不正常。
项目:ICE1PCS01 控制boost PFC
现象:全电压范围,用调压器调节的时候,输入电流波形都很好,高频纹波都很小。惟有在220V输入电压左右时候,输入电流的高频纹波突然变大。大于220V,和小于220V都很小.
解决办法:用AC souce 就好,任何电压下高频纹波都比较大,哈哈。
分析:用的是自耦调压器,自藕调压是有漏感的,漏感可以把输入高频纹波电流滤掉,但是到220V(网压)的时候,自藕调压器输出端其实就直接和输入端相连了,自然就没有漏感了。
项目: UC3845双管反激
现象:驱动不稳定,不停的抖动,变压器滋滋叫。调节环路毫无用处,用示波器察看uc3845振荡脚的锯齿波形,发现锯齿波的频率有抖动。UC3845是固定频率的,看来有干扰了。
解决办法:把控制电路的地 和 功率地严格分开,然后的单点连接。驱动信号稳定,频率固定,变压器不叫了。但是可恶的是,传导居然变差了。可能传说中的频率抖动,的确对传导有好处。
分析:layout在电源设计中很重要,特别是地的布局,功率地和信号地分开,并且单点接地。就是避免高频功率电流流过信号地平面,不然会干扰最近整理书籍,发现一本笔记本。里面记录着当初电源入门的时候,调试过程中所看到的一些异常现象,以及后来的解决办法。可惜现在已经没有这个好习惯了,其实很多工程师认为设计电源是非常重经验的一门技术,要见多识广。我觉得这种经验,不但体现在设计中,更体现在调试的过程。当你一看到波形,就能把问题定位,那就是最高境界。接下来,我会把那些记录一点点贴上来,当然更希望网友也能在此贴里分享那些让你印象深刻的调试经验。
项目:UC3842控制电路学习板
现象:UC3842供电正常,但是Vref居然不是5V,而是高于5V。
解决办法:把管脚重新焊一遍。
分析:UC3842的GND脚焊接不良,导致电压浮起来了。
项目:某实验室一台电源坏了,拆开一看,UC3875控制的全桥,需要修理。
现象:初步检查,功率管坏了,由于没有同型号的管子,把所有的管子换成同功率等级的管子。上电之后,输入电压较低的时候,一切正常。当输入电压较高的时候,驱动混乱,频率抖动。
解决办法:把功率管的驱动电阻增大,该现象消失,一切正常,电源修好。
分析:新的管子寄生参数和旧管不同,在同样的驱动电路下,开关速度会比较快,导致干扰比较大,在高压的时候,干扰大到影响控制电路的工作。
项目:UC3845双管正激
现象:两个管子关断之后,DS所承受的电压非常悬殊,并非理论上的各自一半。猜测是 MOS的参数不一致导致,把上下管焊下来,交换位置,结果,还是一样。看来和MOS无关。
解决办法:调节两管驱动,让他们尽量同时关断,情况略有改善,但还是无法平分电压。
分析:这个应该是两个原因引起的,一个是PCB寄生参数的不同导致,两个位置的管子,DS的实际电容有差异。另外一个是,驱动不是很同步关断。
项目:UC3845控制辅助绕组反馈的反激
现象:主路输出电压在开机的时候有很大过冲。但是,参与反馈的辅助绕组的电压并没有过冲。
解决办法:为了可调节调整率,辅组绕组上串联了一个电阻。将这个电阻的阻值减小,主路输出过冲明显减小。
分析:由于反馈采样的是辅组绕组,而辅组绕组串联了一个电阻,导致启动的时候,辅组绕组的电压和反馈处的电压,有压差,通过变压器耦合,导致输出电压过冲
项目:NCP1014, 光藕反馈反激
现象:人家已经做过的成熟板子,重新焊了一块之后,发现输出稳压不对。
解决办法:自作聪明换了其他型号同等基准的431替换原来的bom中431,换回来就好了。
分析:原先用的是zetex的431,其最小工作电流是uA级别的,所以设计时基本没考虑最小工作电流。后来替换了TI的431,最小工作电流是1mA,导致工作不正常。
项目:ICE1PCS01 控制boost PFC
现象:全电压范围,用调压器调节的时候,输入电流波形都很好,高频纹波都很小。惟有在220V输入电压左右时候,输入电流的高频纹波突然变大。大于220V,和小于220V都很小.
解决办法:用AC souce 就好,任何电压下高频纹波都比较大,哈哈。
分析:用的是自耦调压器,自藕调压是有漏感的,漏感可以把输入高频纹波电流滤掉,但是到220V(网压)的时候,自藕调压器输出端其实就直接和输入端相连了,自然就没有漏感了。
项目: UC3845双管反激
现象:驱动不稳定,不停的抖动,变压器滋滋叫。调节环路毫无用处,用示波器察看uc3845振荡脚的锯齿波形,发现锯齿波的频率有抖动。UC3845是固定频率的,看来有干扰了。
解决办法:把控制电路的地 和 功率地严格分开,然后的单点连接。驱动信号稳定,频率固定,变压器不叫了。但是可恶的是,传导居然变差了。可能传说中的频率抖动,的确对传导有好处。
分析:layout在电源设计中很重要,特别是地的布局,功率地和信号地分开,并且单点接地。就是避免高频功率电流流过信号地平面,不然会干扰制电路。
项目:UCC3895电流型控制移相控制全桥,加倍流整流
现象:变压器出现偏磁
解决办法:把次级功率电路的一根PCB功率走线加粗。该PCB走线连接的是倍流整流电路的某一个电感。偏磁消失~~~~
分析:倍流整流电路有个特有的问题,就是两个电感上的平均电流会不一致,如果采用电流型控制的话,控制信号会保证变压器初级的正负电流峰值相同,那么如果变压器次级的正负电流不一致的话,就会导致偏磁出现。
而电感平均电流不一致,是因为两个电感的直流阻抗有差异。但实际上,同一批地电感,差别没那么大,反而连接这些电感的PCB走线差异比较大,导致两个电感的实际直流电阻(加上PCB走线的电阻)差异比较大。
项目:431加光藕反馈反激
现象:输出电压调整率很差,电压随负载的增大明显下降。测量电压采样点和输出脚的电压差并不大。
解决办法:在431的基准脚,和阴极之间并一个小电容。调整率立马变好。
分析:431的基准脚处受到干扰。
项目:IR1150 boost PFC
现象:开关频率为100K,但是输入居然有1Khz 纹波电流。X电容还吱吱叫。
解决办法:调整EMI滤波器参数。
分析:EMI滤波器自己谐振。
项目:反激同步整流
现象:同步整流管的电压尖峰非常高,怎么吸收都不行。
解决办法:把同步管换成,具有快恢复体二极管的管子
分析:由于同步管的体二极管的反向恢复时间太长,导致很大的反向恢复电流。从而引起剧烈电压尖峰。
项目:IR1150 PFC
现象:高温测试的时候,MOSFET的壳温才80度,就炸鸡了。先前几台,MOS的壳温到达110度,都安然无事。
解决办法:弄出来查原因,是驱动电阻焊错了,本来10R,结果焊成100R.
分析:驱动电阻太大导致MOS损耗很大,同样的结到壳热阻,大的功耗会导致大的温差。虽然壳温才80度,但实际结温已经超过了MOS的承受范围。
项目:L4981 PFC
现象:空载上电,驱动乱的不得了,震荡频率明显变化。输入电压越高越厉害。开始以为,地线没布好,PCB割了又割,都是不能解决。
解决办法:仔细察了一下PCB ,发现有一根功率线立离控制电路比较近,该功率线连接的是MOSFET的D极。把该功率线隔断,让功率电流从远离控制电路的地方绕过去,没用。把靠近控制电路的PCB铜线弄成孤岛,使之成为死铜,干扰消失。
分析:电场干扰,MOS的D极是dv/dt很大的地方,产生很大的共模干扰。所以控制电路要尽量远离这个点