《电子技术应用》
您所在的位置:首页 > 显示光电 > 业界动态 > 日本专业研讨会关于LED最新技术进展的报告

日本专业研讨会关于LED最新技术进展的报告

2010-11-19

   在与创能及节能元件展会“Green Device 2010”同时进行的研讨会" title="研讨会">研讨会“Green Device 论坛2010”上,举行了照明用LED、有机EL以及半导体激光器等固体光源技术研讨会“新一代照明论坛”。固体光源领域的国内外厂商从发光效率、亮度、寿命、演色性、面光源化以及点光源化五点出发,介绍了最新进展。

  日本" title="日本">日本飞利浦流明公司(Philips Lumileds Lighting)的神山博幸以白色LED的高效率化为中心,对相关技术的未来进行了展望。据神山博幸介绍,按照普通白色LED发光效率的提高速度来看,将会在近几年内超过200lm/W。虽然灯泡色LED在发光效率方面逊色于普通的白色LED,但目前已经达到90~100lm/W,不久就将超过200lm/W。今后,还需要在高电流密度下实现同样级别的高效率。具体做法是减少电流密度越高反而发光效率越低的“衰退(Droop)”现象。

  日本飞利浦流明为解决这一课题,正在改变白色LED及灯泡色LED的光源——蓝色LED芯片的构造。虽然具体细节没有公布,但已经在蓝色LED芯片发光区域的量子井层和隔断层的界面附近,采用了防止电子或者空穴蓄积的层构造,使电子和空穴易于再次结合。这样,1mm见方芯片的外部量子效率在通入350mA电流时可达65.5%,通入1A电流时的效率也可高达59%。

  通过上述方法以及降低顺向电压技术等,希望将来在1mm见方芯片中电流密度为2A/mm2时的发光效率能够达到150lm/W,光通量能够达到1000lm。这就需要将内部量子效率提高到80%(目前为53%),外部量子效率提高到72%(目前为47%),荧光体的转换效率提高到252lm/Wopt(目前为228 lm/Wopt)。

  日本欧司朗光电半导体公司(Osram Opto Semiconductors GmbH)的Michael Schmitt也介绍了降低衰退现象的高输出功率白色LED技术。这是一项名为“UX:3”的将n电极设在LED内部的技术。使电流在芯片内部均匀地通过,从而控制电流密度,提高效率。另外,通过取消芯片表面的电极,使芯片内部的光更容易向芯片外部放出。

  该公司透露了向1mm见方的芯片通入电流时光输出功率的特性。与随着电流的增大光输出功率呈线形上升的理想特性(没有衰退现象)相比,通入电流在350mA~1A范围时的光输出功率比理想特性低15%左右。

   在与创能及节能元件展会“Green Device 2010”同时进行的研讨会“Green Device 论坛2010”上,举行了照明用LED、有机EL以及半导体激光器等固体光源技术研讨会“新一代照明论坛”。固体光源领域的国内外厂商从发光效率、亮度、寿命、演色性、面光源化以及点光源化五点出发,介绍了最新进展。

  日本飞利浦流明公司(Philips Lumileds Lighting)的神山博幸以白色LED的高效率化为中心,对相关技术的未来进行了展望。据神山博幸介绍,按照普通白色LED发光效率的提高速度来看,将会在近几年内超过200lm/W。虽然灯泡色LED在发光效率方面逊色于普通的白色LED,但目前已经达到90~100lm/W,不久就将超过200lm/W。今后,还需要在高电流密度下实现同样级别的高效率。具体做法是减少电流密度越高反而发光效率越低的“衰退(Droop)”现象。

  日本飞利浦流明为解决这一课题,正在改变白色LED及灯泡色LED的光源——蓝色LED芯片的构造。虽然具体细节没有公布,但已经在蓝色LED芯片发光区域的量子井层和隔断层的界面附近,采用了防止电子或者空穴蓄积的层构造,使电子和空穴易于再次结合。这样,1mm见方芯片的外部量子效率在通入350mA电流时可达65.5%,通入1A电流时的效率也可高达59%。

  通过上述方法以及降低顺向电压技术等,希望将来在1mm见方芯片中电流密度为2A/mm2时的发光效率能够达到150lm/W,光通量能够达到1000lm。这就需要将内部量子效率提高到80%(目前为53%),外部量子效率提高到72%(目前为47%),荧光体的转换效率提高到252lm/Wopt(目前为228 lm/Wopt)。

  日本欧司朗光电半导体公司(Osram Opto Semiconductors GmbH)的Michael Schmitt也介绍了降低衰退现象的高输出功率白色LED技术。这是一项名为“UX:3”的将n电极设在LED内部的技术。使电流在芯片内部均匀地通过,从而控制电流密度,提高效率。另外,通过取消芯片表面的电极,使芯片内部的光更容易向芯片外部放出。

  该公司透露了向1mm见方的芯片通入电流时光输出功率的特性。与随着电流的增大光输出功率呈线形上升的理想特性(没有衰退现象)相比,通入电流在350mA~1A范围时的光输出功率比理想特性低15%左右。

  有效散出芯片热量,可靠性提高

  在延长光源寿命方面,丰田合成的山口寿夫发表了演讲。指出在用于照明等的高输出功率白色LED方面,光源蓝色LED芯片的散热方法非常重要。作为应用于该公司产品的散热技术,首先在热传导率高的陶瓷基板上将蓝色LED芯片进行倒装芯片封装,把成为热源的芯片发光层靠近陶瓷基板。然后,将LED芯片的电极与陶瓷基板的电极通过金锡(AuSn)焊料连接。金锡焊料的存在使LED芯片的热量便于从电极散出。在可靠性试验方面,即使经过两万小时的使用,亮度也仅有5%左右的降低。在频繁进行白色LED的开灯、关灯时,流向LED芯片的热压也会减小,因此通过这种使用方法也可延长寿命。

  丰田合成还介绍了该公司开发的采用玻璃材料封装的白色LED。玻璃封装的特点是,与采用树脂封装的普通白色LED相比可靠性更高(短波长的光不会变弱);线膨胀系数方面,由于LED芯片与封装基板距离很近,不易产生由温度变化引起的热压。该公司在开发中与住田光学玻璃进行了合作。目前,计划在采用小型芯片的部分产品中展开该技术,最新数据方面,通入20mA电流时的发光效率达到了104.9lm/W(现有规格为76.5lm/W)。首先将用于检测设备以及内视镜等特殊用途的照明,将来还希望在更广领域的照明中使用。

  LED要想成为照明主角,不但要具有高能源效率、充分的亮度以及较长的寿命等,还要追求光线是否让人感到舒适。从这一角度推进白色LED开发的就是三菱化学。在“Green Device Forum 2010”上,三菱化学的折户文夫介绍说,演色性及色彩表现性等白色光的色调今后将越来越重要。

  折户认为,仅用平均演色性指数(Ra)来作为判断白色LED演色性好坏的数值是不够的。因为Ra中不包含对鲜红色等高彩度颜色的演色性评价。对此,折户强调了该公司将红色荧光体CASN(CaAlSiN3;Eu2+)添加到白色LED荧光体中做法的好处。

  折户指出,想要进一步提高演色性时,可在近紫外LED上结合使用红、绿、蓝三种荧光体。三菱化学开发出了利用发光波长为405nm的近紫外LED的白色LED。虽然仍存在因斯托克斯效应导致的效率下降、因发光波长短导致的封装材料劣化等课题,但Ra超过了95,高彩度红色的演色性(R9)超过了90。但白色LED的发光效率在色温为2700K时还比较低,只有25lm/W。该公司今后将致力于发光效率的提高。

  折户在演讲中提到了以15种饱和色作为色卡的演色性新评测基准Color Quality Scale(CQS),Ra虽低但CQS高的话,也可清晰看到照明下的物体,这种CQS目前正在接受CIE Technical Committee的审议。

本站内容除特别声明的原创文章之外,转载内容只为传递更多信息,并不代表本网站赞同其观点。转载的所有的文章、图片、音/视频文件等资料的版权归版权所有权人所有。本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如涉及作品内容、版权和其它问题,请及时通过电子邮件或电话通知我们,以便迅速采取适当措施,避免给双方造成不必要的经济损失。联系电话:010-82306118;邮箱:aet@chinaaet.com。