基于改进VGG16的猴子图像分类方法 | |
所属分类:技术论文 | |
上传者:muyx | |
文档大小:2108 K | |
标签: 迁移学习 VGG16 卷积神经网络 | |
所需积分:0分积分不够怎么办? | |
文档介绍:为提高对细粒度图像分类的准确性和分类速度,提出基于改进VGG16和迁移学习的图像分类方法。首先从kaggle平台中获取十种不同猴子数据集,并对数据集进行标准化处理,包含图片去椒盐噪声、将数据集转换为TensorFlow中提供的统一TFRecord数据格式。然后迁移学习改进的VGG16卷积神经网络,模型的优化包括利用Swish作为激活函数、将softmax loss与center loss相结合作为损失函数以实现更好的聚类效果、采用性能完善的Adam优化器。用训练集训练模型以确定微调参数信息,再用测试集检验模型准确性。结果表明,该方法对猴子图像分类的准确度可达到98.875%,分类速度也得到了显著提升。与其他传统卷积神经网络模型相比,该方法具有更高的准确性和适用性。 | |
现在下载 | |
VIP会员,AET专家下载不扣分;重复下载不扣分,本人上传资源不扣分。 |
Copyright © 2005-2024 华北计算机系统工程研究所版权所有 京ICP备10017138号-2