基于稀疏建模和SVM的管道缺陷分类方法研究
所属分类:技术论文
上传者:aetmagazine
文档大小:661 K
标签: 稀疏建模 SVM 管道缺陷
所需积分:0分积分不够怎么办?
文档介绍:埋地钢质管道缺陷识别及评估是管道检测领域中长期存在的难点之一,而实现对管道缺陷准确分类的前提是管道损伤信号的精准提取,针对埋地管道缺陷信号特征提出一种基于稀疏建模和支持向量机(SVM)的管道缺陷信号提取与识别方法。通过从原始信号中学习获得字典,将该字典采用正则化正交匹配追踪算法构建缺陷信号稀疏模型,并根据压缩感知理论获得信号的特征向量。进一步,采用多分类SVM将缺陷信号的特征向量与管道实际缺陷类型建立映射关系,并通过遗传粒子群优化算法指导SVM参数选取。结果表明:提出的分类方法可实现对管道缺陷损伤程度的准确划分,该方法已经成功通过实验室验证,并成功应用于华北某油田的工程领域检测。
现在下载
VIP会员,AET专家下载不扣分;重复下载不扣分,本人上传资源不扣分。