基于深度学习的鱼类识别与检测的算法研究 | |
所属分类:技术论文 | |
上传者:muyx | |
文档大小:728 K | |
标签: PyTorch框架 ResNet50网络 PyQt5可视化界面 | |
所需积分:0分积分不够怎么办? | |
文档介绍:鱼类分类识别在渔业资源研究、鱼类知识的科学推广、水产养殖加工、稀有物种保护等领域具有广泛的应用前景。针对大菱鲆、黄鳍鲷、金钱鱼、鲻鱼这四种鱼类,利用PyTorch框架为基础,通过ResNet50网络模型,用不同的算法对其进行分类识别,不断对模型进行优化,对四种鱼类训练学习,通过测试其准确率达到96%以上。同时用PyQt5开发了GUI可视化界面,通过界面图片的选择和预测功能按钮的操作,测试结果实际类别与预测类别一致,用DSOD框架做了水下目标实时跟踪检测,提高了对小目标的检测率,同时保持了模型的检测速度,检测结果达到期望。 | |
现在下载 | |
VIP会员,AET专家下载不扣分;重复下载不扣分,本人上传资源不扣分。 |
Copyright © 2005-2024 华北计算机系统工程研究所版权所有 京ICP备10017138号-2