基于优化多视角图像采集的点云分类 | |
所属分类:技术论文 | |
上传者:aetmagazine | |
文档大小:498 K | |
标签: 三维点云 多视角图像 卷积神经网络 | |
所需积分:0分积分不够怎么办? | |
文档介绍:基于二维多视角3D识别方法中,可使用多个2D投影图表示三维模型特征信息,但不同视角投影图像的特征不同,神经网络对其学习效率也有所差异。卷积神经网络能够映射图像的特征,可用此方法分析这个问题。混合视角数据集分析不同视角投影特征在卷积神经网络中的重要性,根据重要性的不同优化混合视角数据集的采集密度。最终实验结果表明,不同视角产生的二维图像分类准确率不一样,其中俯视角度投影的分类准确率最差,优化后的数据集在相同神经网络模型下达到了最优分类准确率。 | |
现在下载 | |
VIP会员,AET专家下载不扣分;重复下载不扣分,本人上传资源不扣分。 |
Copyright © 2005-2024 华北计算机系统工程研究所版权所有 京ICP备10017138号-2