基于ARM和深度学习的智能行人预警系统 | |
所属分类:技术论文 | |
上传者:zhoubin333 | |
文档大小:908 K | |
标签: 行人安全 目标检测 神经网络 | |
所需积分:0分积分不够怎么办? | |
文档介绍: 针对行人交通安全问题,开发行人检测系统以提醒行人和司机危险的发生。对目标检测神经网络模型进行分析和对比实验,选取以darknet为网络框架的YOLO-fastest模型进行改进优化并采用分类并标签的实时交通数据进行训练,最终将训练模型部署至开发板完成实时性检测并能够根据车辆速度反馈给行人危险信号。实验结果表明YOLO-fastest模型的平均检测精度为96.1%,检测速度为33 f/s,模型大小为1.2 MB,既满足检测精度又满足检测速度的要求,能够完成对真实交通场景下的实时性检测。 | |
现在下载 | |
VIP会员,AET专家下载不扣分;重复下载不扣分,本人上传资源不扣分。 |
Copyright © 2005-2024 华北计算机系统工程研究所版权所有 京ICP备10017138号-2