针对遥感影像的MSA-YOLO储油罐目标检测 | |
所属分类:技术论文 | |
上传者:aetmagazine | |
文档大小:6320 K | |
标签: 计算机视觉 目标检测 深度学习 | |
所需积分:0分积分不够怎么办? | |
文档介绍:原油作为一种重要的战略物资,在我国经济和军事等多个领域均起到重要作用。提出一种算法MSA-YOLO(MultiScale Adaptive YOLO),该算法在YOLOv4算法的基础上进行优化,并基于以吉林一号光学遥感卫星影像为主的遥感图像数据集进行实验,对特定监控区域内的储油罐进行识别与分类。算法优化内容包括:为简化储油罐监测模型同时保证模型的效率,对YOLOv4的网络结构中的多尺度识别模块进行修剪;使用k-means++聚类算法进行初始锚框的选取,使模型加速收敛;使用基于CIoU-NMS的优化,进一步提升推理速度和准确度。实验结果表明,与YOLOv4相比,MSA-YOLO模型参数数量减少25.84%;模型尺寸减少62.13%;在Tesla V100的GPU环境下,模型的训练速度提升6 s/epoch,推理速度提升15.76 F/s;平均精度为95.65%。与此同时,MSA-YOLO算法在多种通用目标识别算法进行的对比实验中均体现出了更高效的特点。MSA-YOLO算法对储油罐进行准确且实时的识别具有通用可行性,可为遥感数据在能源期货领域提供技术参考。 | |
现在下载 | |
VIP会员,AET专家下载不扣分;重复下载不扣分,本人上传资源不扣分。 |
Copyright © 2005-2024 华北计算机系统工程研究所版权所有 京ICP备10017138号-2