基于DBN-BP深度算法的热轧板带横断面预测 | |
所属分类:技术论文 | |
上传者:aetmagazine | |
文档大小:648 K | |
标签: 热轧 深度学习 板带厚度预测 | |
所需积分:0分积分不够怎么办? | |
文档介绍:随着各工业领域的快速发展,市场对薄规格、高强度板带产品的需求快速增加。而热轧板带横断面形状是热轧板带产品质量的主要评价指标。基于数据挖掘技术,对轧机数据库中的数据进行分析与处理,其中数据挖掘技术采用深度置信网络(Deep Belief Neural,DBN)和BP(Back Propagation)算法相结合,构建板带横向厚度分布的预测模型。DBN-BP算法由多个限制玻尔兹曼网络(Restricted Botlzmann Machine,RBM)逐层堆叠而成,并使用无监督的逐层训练的方式得到网络的权值矩阵和偏置供BP算法使用,而BP算法通过误差反向传播的方式对整个网络进行微调。该方法克服了BP算法因随机初始化权值参数而陷入局部最优和训练时间长的缺点。通过与BP算法相比较可知,采用DBN-BP方法预测终轧道次稳定轧制时板带中点厚度误差在±5.6 μm范围内的概率可达95%;而BP算法的预测误差范围为±11 μm。并且通过对板带横断面形状的预测结果分析可知,相比于BP算法,DBN-BP深度学习方法对于板带边部厚度的预测更具有优势。 | |
现在下载 | |
VIP会员,AET专家下载不扣分;重复下载不扣分,本人上传资源不扣分。 |
Copyright © 2005-2024 华北计算机系统工程研究所版权所有 京ICP备10017138号-2