基于CNN的智慧农场图像分类方法
所属分类:技术论文
上传者:zhoubin333
文档大小:4508 K
标签: 深度学习 卷积神经网络 数据增强
所需积分:0分积分不够怎么办?
文档介绍:为解决新疆兵团农业现代化建设中有感知无决策的问题,提出一种基于注意力机制模块(SENet)与卷积神经网络混合模型迁移学习的图像分类方法(TL-DA-SE-CNN)。该方法选择4种不同的CNN模型进行权重采集,包括VGGNet、ResNet、InceptionNet和MobileNet。模型使用SENet分类器代替卷积神经网络的全连接层,提取图像的结构性高阶统计特征进行主题分类,并使用BP算法进行参数调整,分类准确度达98.20%。实验结果表明,将CNN与迁移学习、数据增强和SENet相结合的技术提高了牲畜图像分类的性能,是卷积神经网络在农场自动化分群中的有效应用。
现在下载
VIP会员,AET专家下载不扣分;重复下载不扣分,本人上传资源不扣分。