使用Xcelium Machine Learning技术加速验证覆盖率收敛 | |
所属分类:技术论文 | |
上传者:zhoubin333 | |
文档大小:2077 K | |
标签: 随机测试 受约束的随机 功能覆盖率 | |
所需积分:0分积分不够怎么办? | |
文档介绍:随着设计越来越复杂,受约束的随机化验证方法已成为验证的主流方法。一般地,验证激励做到不违反spec描述条件下尽量随机,这样验证能跑到的空间才更充分。但是,这给功能覆盖率收敛带来极大挑战,为解决这一难题,Cadence率先推出了仿真器的机器学习功能——Xcelium Machine Learning,采用机器学习技术让功能覆盖率快速收敛,大大提高验证仿真效率。介绍了Xcelium Machine Learning的使用流程,并给出在相同模拟(simulation)验证环境下应用Machine Learning前后情况对比。最后Machine Learning在模拟(simulation)验证中的应用前景进行了展望。 | |
现在下载 | |
VIP会员,AET专家下载不扣分;重复下载不扣分,本人上传资源不扣分。 |
Copyright © 2005-2024 华北计算机系统工程研究所版权所有 京ICP备10017138号-2