基于深度学习技术的水稻环境因素产量预测
所属分类:技术论文
上传者:wwei
文档大小:3508 K
标签: 水稻产量预测 Copula熵 深度学习
所需积分:0分积分不够怎么办?
文档介绍:水稻作为全球重要的粮食作物,准确预测水稻产量在农业发展中起着重要作用。由于水稻在环境因子与其生长机理的作用下往往呈现出非线性的特点,难以对其做出较为准确的预测,因此,提出CE-CGRU水稻产量预测模型,对非线性环境因子Copula熵(CE)方法进行提取特征并与CNN和GRU技术结合在一起。其目的是在水稻品种确定的条件下,识别产量预测的重要特征。根据使用浙江省临安区真实数据分析和比较所提出的模型的性能,构建了其他5个产量预测模型进行对比,分别是MLR、RF、LSTM、GRU和CNN-LSTM。结果显示,CE-CGRU模型的MAE、MSE和MAPE分别为0.677、0.87和5.029%,表明CE-CGRU模型具有更好的能力来捕捉水稻产量与环境因素之间的复杂非线性关系。此外,还对不同的特征选择方法以及不同时间步长进行了比较和分析。
现在下载
VIP会员,AET专家下载不扣分;重复下载不扣分,本人上传资源不扣分。