《电子技术应用》
您所在的位置:首页 > 模拟设计 > 设计应用 > 全过程学业预警跟踪评价系统的研究与实现
全过程学业预警跟踪评价系统的研究与实现
电子技术应用
李启鹏1,曾松伟2
1.浙江农林大学 数学与计算机科学学院;2.浙江农林大学 光机电工程学院
摘要: 传统的学业预警系统通常更多关注学生的成绩、考勤等终结性指标,并在这些指标达到特定条件时触发预警。所研究的学业预警系统采用了全过程化监测预警方法,不仅对学生的期末成绩、年度考核、出勤等常规指标进行监测,还对学生的课堂表现、课后作业、团队考核、思想政治考核、经济压力等进行全面跟踪、分析与评价。同时根据本科生导师制实施细则,发动各导师积极参与到学业预警活动中,作为学生学习过程中的重要指导者,跟踪和评估学生的学业表现,并提供及时、有效、精准的学业指导,实现了从发出预警到指导效果的全程、闭环监控。采用粒子群算法(PSO)优化支持向量机(SVM),并结合Web与小程序技术,实现了全过程学业预警跟踪评价系统,有效提升了预警的精准度和时效性,填补了传统学业预警系统的不足。该系统对于提高学生学业质量具有重要意义,同时也为其他高校的学业预警帮扶系统提供参考。
中图分类号:G456;TP311.1;TP399 文献标志码:A DOI: 10.16157/j.issn.0258-7998.245298
中文引用格式: 李启鹏,曾松伟. 全过程学业预警跟踪评价系统的研究与实现[J]. 电子技术应用,2025,51(2):86-92.
英文引用格式: Li Qipeng,Zeng Songwei. Research and implementation of a full-process academic early warning and tracking evaluation system[J]. Application of Electronic Technique,2025,51(2):86-92.
Research and implementation of a full-process academic early warning and tracking evaluation system
Li Qipeng1,Zeng Songwei2
1.College of Mathematics and Computer Science, Zhejiang A&F University; 2.College of Optical, Mechanical and Electrical Engineering
Abstract: Traditional academic warning systems usually focus more on terminal indicators such as students’ grades and attendance, and trigger warnings when these indicators meet specific conditions. The academic warning system studied in this paper adopts a whole-process monitoring and warning method, which not only monitors conventional indicators such as students’ final grades, annual assessments, and attendance, but also comprehensively tracks, analyzes and evaluates students’ classroom performance, homework after class, team assessments, ideological and political assessments, and economic pressure, etc. Meanwhile, based on the implementation rules of the undergraduate tutor system, all tutors are encouraged to actively participate in academic warning activities. As important mentors in the learning process of students, they track and evaluate students’ academic performance, and provide timely, effective, and precise academic guidance, realizing the whole-process and closed-loop monitoring from issuing warnings to guiding effects. This paper uses Particle Swarm Optimization (PSO) to optimize Support Vector Machine (SVM), and combines Web and mini-program technology to implement a whole-process academic warning tracking and evaluation system, which effectively improves the accuracy and timeliness of warnings, filling in the gaps of traditional academic warning systems. This system is of great significance for improving the quality of students’ academic performance, and also provides a reference for academic warning support systems in other universities.
Key words : academic early warning;dual mentorship;whole process;mutual assistance and mutual supervision;multidimensional data-drive

引言

随着中国高等教育规模的不断扩大,高等教育已经从精英化教育转向普及化教育,如何保证学生的高质量培养已成为高校教育管理亟待解决的问题[1]。在此背景下,学业全过程预警机制应运而生,成为高校提高教学质量的有效措施[2-3]。

学业预警机制是指通过对学生学习状态和成绩情况进行监测和评估,及时发现并干预存在学业风险的学生,从而最大限度地提高学生培养质量的一种管理方法。该机制不仅关注学生个性化需求,同时也涉及教学体系、教师队伍的建设和优化等方面。

建立学业过程预警机制不仅可以帮助学校提高教学效果,还可以“让学生忙起来、让教学活起来、让管理严起来”。及时发现存在学业风险的学生并采取适当的干预措施帮助他们调整学习状态、提高学习效率是至关重要的;另外,学校还应加强与学生的互动和沟通,以更好地了解他们的真实需求和反馈。通过这种方式,可以激发学生的学习热情和创新能力,促使他们更积极地投入到学习当中。此外,建立学业预警机制还可以促进高校管理的严格化、规范化和信息化,实现数字赋能,为高校教育管理提供有力保障,为推动我国教育事业的发展做出积极贡献。


本文详细内容请下载:

https://www.chinaaet.com/resource/share/2000006331


作者信息:

李启鹏1,曾松伟2

(1.浙江农林大学 数学与计算机科学学院,浙江 杭州 311300;

2.浙江农林大学 光机电工程学院,浙江 杭州 311300)


Magazine.Subscription.jpg

此内容为AET网站原创,未经授权禁止转载。