《电子技术应用》
您所在的位置:首页 > 电源技术 > 设计应用 > 利用低功耗、 单位增益差 动放大器实现低成本电流源
利用低功耗、 单位增益差 动放大器实现低成本电流源
摘要: “差动放大器构成精密 电流源的核心”一文描述了如何利用单位增益差动放大器 AD8276和微功耗运算放大器AD8603来实现精密电流源。图 1 所示为该电路针对低成本、低电流应用的简化版本。
Abstract:
Key words :

差动放大器构成精密 电流源的核心”一文描述了如何利用单位增益差动放大器 AD8276和微功耗运算放大器AD8603来实现精密电流源。图 1 所示为该电路针对低成本、低电流应用的简化版本。

图1.针对低成本、低电流应用的简易电流源

输出电流IO, 约等于差分输入电压, VIN + – VIN–, 除以 R1,推导过程如下。

因此,该差分输入电压出现在 R1 两端.

实验设置

  1. AD5750EVB(AD5750 驱动器和AD5662 16 位nanoDAC®) 为AD8276 提供双极性输入。
  2. 万用表 OI-857 测量输入电压、输出电压和电阻。
  3. R1 和RLOAD的标称值分别为 280 Ω和 1 kΩ,实测值分别为 280.65 Ω和 997.11 Ω。
  4. 实测电压除以LOAD便得到输出电流。

图2.理想和实际输出电流与差分输入电压的关系

实验结果
图2显示了输出电流与输入电压的关系。 X轴为差分输入电压, 范围–3.2 V 至+3.2 V;Y 轴为输出电流。四条线分别显示了理 想电流输出和–40°C、+25°C 及+85°C 时的实际输出。

图 3 显示了输出电流误差与输入电压的关系。三条线分别显示 了–40°C、+25°C和+85°C 时的误差。

图3.输出电流误差与输入电压的关系

实际输出电流以图4所示的AD8276短路输出电流为限。 –40°C 时,短路电流约为 8 mA。

图4.AD8276 短路输出电流与温度的关系

总结
去除外部升压晶体管和缓冲器并增加一个电阻,便可以利用 AD8276 构建一个低成本、低电流的电流源,其在–40°C 至 +85°C 温度范围内的总误差小于约 1.5%。采用±15 V 电源供电 时,整个温度范围内的输出电流范围约为–11 mA 至+8 mA。 采用+5 V 单电源供电时可以构建一个单极性电流源。

此内容为AET网站原创,未经授权禁止转载。