《电子技术应用》
您所在的位置:首页 > 测试测量 > 设计应用 > 用于自动视力检测的手势识别方法研究
用于自动视力检测的手势识别方法研究
信息技术与网络安全
何启莉,何家峰,郭 娟
(广东工业大学 信息工程学院,广东 广州510006)
摘要: 对于自动视力检测系统,手势识别是关键问题,但是采用传统卷积神经网络模型识别手势存在过拟合、计算量大等问题。提出了一种GR-AlexNet模型,对AlexNet网络模型进行了适应性修改和优化:为了加快计算速度,用7×7、5×5、1×1的三个小卷积核替代原来的11×11的大卷积核,并删除LRN层和一个全连接层;为了减轻过拟合效应,在每次卷积后都加上一个Dropout优化。对同一数据集分别使用LeNet模型、AlexNet模型、VGG16模型与GR-AlexNet模型进行对比实验。实验表明GR-AlexNet模型在识别准确率上较传统的模型有一定的提高,能抑制过拟合现象,并且具有更快的训练速度。
中图分类号: TP391.41
文献标识码: A
DOI: 10.19358/j.issn.2096-5133.2021.03.006
引用格式: 何启莉,何家峰,郭娟. 用于自动视力检测的手势识别方法研究[J].信息技术与网络安全,2021,40(3):32-37,47.
Research on gesture recognition method for automatic vision detection
He Qili,He Jiafeng,Guo Juan
(School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China)
Abstract: For automatic vision detection systems, gesture recognition is a key issue, but the traditional convolutional neural network model to recognize gestures has problems such as over-fitting and large amount of calculation. This paper proposes a GR-Alexnet model, which adaptively modifies and optimizes the Alexnet network model. In order to speed up the calculation, three small convolution kernels of 7×7, 5×5, and 1×1 are used to replace the original 11×11 large convolution kernel, and delete the LRN layer and a fully connected layer; in order to reduce the over-fitting effect, a dropout optimization is added after each convolution. The LeNet model, the Alexnet model ,the VGG16 model and the GR-Alexnet model were used for comparative experiments on the same data set. Experiments show that the GR-Alexnet model has a certain improvement in recognition accuracy compared with the traditional model, can suppress the over-fitting phenomenon, and has a faster training speed.
Key words : automatic vision detection;OpenCV;gesture recognition;Gesture Recognition AlexNet(GR-AlexNet)

0 引言

随着人工智能技术的进步,智能化设备逐渐融入到人们生活的方方面面。传统的医疗检测仪器逐渐被智能电子仪器所替代,如心率测量仪、血压检测仪等,然而视力检测这一基本的体检项目仍然沿用传统的人工检测方法,检测效率低,消耗人力且极不方便。随着计算机视觉技术迅速发展,手势识别也逐渐成为智能人机交互的重要研究领域[1-4]。本文通过对视力检测进行手势识别,达到自动化视力检测的目的。





本文详细内容请下载:http://www.chinaaet.com/resource/share/2000003422




作者信息:

何启莉,何家峰,郭  娟

(广东工业大学  信息工程学院,广东 广州510006)


此内容为AET网站原创,未经授权禁止转载。