中图分类号: TN820.1 文献标识码: A DOI:10.16157/j.issn.0258-7998.222874 中文引用格式: 王琛,徐慧娟,杨龙,等. 基于串并联结合馈电的高增益垂直极化全向天线[J].电子技术应用,2022,48(10):97-102. 英文引用格式: Wang Chen,Xu Huijuan,Yang Long,et al. A high gain vertically polarized ominidirectional antenna based on series-parallel fending method[J]. Application of Electronic Technique,2022,48(10):97-102.
A high gain vertically polarized ominidirectional antenna based on series-parallel fending method
Wang Chen1,Xu Huijuan2,Yang Long3,Zhou Wentao3,Wang Na3
1.The Military Representative Office of the Equipment Department of the Aerospace System Department in Chengdu, Chengdu 610036,China; 2.Unit 63620 of the PLA,Lanzhou 730000,China;3.Southwest China Institute of Electronic Technology,Chengdu 610036,China
Abstract: A vertically polarized omnidirectional antenna with high gain is proposed based on the method of series-parallel feeding. Firstly, a printed dipole antenna is used as the basic radiation unit, and then four of the basic radiation units are formed into a series-fed array to improve the antenna gain. Secondly, in order to further increase antenna gain and make the antenna patterns of the series-fed array desensitize to frequency, two four-element series-fed arrays are connected in parallel and fed from the center through a parallel feed network. Finally, the metal support and the microstrip feeding network are symmetrically designed to achieve good feeding and improve the unevenness of the pattern in the horizontal plane. The antenna was fabricated and measured. The experimental results show that the impedance bandwidth of the antenna is 13% and the VSWR≤2 in the frequency range of 7.4 GHz~8.4 GHz. The gain variations in the horizontal plane less than 2.5 dB and the gains are more than 8 dB across the operating band. In addition, the transverse size of the antenna is less than 0.7λ0. The antenna has the advantages of compact structure, convenient processing and excellent performance. It can be used in wide-band, high-gain and wide-angle space coverage communication systems.
Key words : printed dipole;series-parallel fending;high gain;vertically polarized omnidirectional antenna