《电子技术应用》
您所在的位置:首页 > 电源技术 > 设计应用 > 基于MAX5026的单光子探测器直流偏压源设计
基于MAX5026的单光子探测器直流偏压源设计
摘要: 单光子探测是一种检测极微弱光的方法,在近红外波段,雪崩光电二极管(APD)是探测极微弱光的主要器件之一。APD是一种能实现光电转换且具有内部增益的高灵敏度光电探测器,其工作电压不高,噪声相对较小,非常适合极微弱光信号(如单个光子信号)的探测。
Abstract:
Key words :

  1 引 言

  单光子探测是一种检测极微弱光的方法,在近红外波段,雪崩光电二极管(APD)是探测极微弱光的主要器件之一。APD是一种能实现光电转换且具有内部增益的高灵敏度光电探测器,其工作电压不高,噪声相对较小,非常适合极微弱光信号(如单个光子信号)的探测。

 

  由于单光子探测是在高技术领域的重要地位,他已经成为各发达国家光电子学重点研究的课题之一。在量子密钥分发、天文测光、分子生物学、超高分辨率光谱学、非线形光学、光时域反射等现代科学技术领域中,都涉及到极微弱光信号的检测问题。在量子密钥分发系统中,量子信息的载体是单光子,如何将携带信息的单光子探测出来是实现量子密钥分发的关键。APD是实现单光子探测的核心器件。在单光子探测器设计中,为了开发APD的极限灵敏度,APD必须置于反向偏压(Vb)稍高于雪崩击穿电压(Vbr)之上,即所谓的盖格(Gerger Mode)模式下工作,使APD的雪崩增益M取最佳值MOPT,才能达到较高的探测效率。然而在盖格模式时,APD的雪崩增益M不仅与环境温度T还与其直流偏压Vb的大小密切相关。

 

  2 盖格模式下APD雪崩特性

  雪崩光电二极管的雪崩增益M的大小与电子或空穴的有关,其雪崩过程是一个复杂的随机过程,通常用平均雪崩增益M来表示。M与击穿电压Vbr、偏置电压Vb的关系可用以下经验公式来描述:

       经验公式  
       其中n是与温度有关的特性指数(在2.5~7之间变化,取决于光电材料)。从公式可以看出,APD可以工作在两种方式下:一是偏置电压小于击穿电压,然而在这种情况下雪崩增益过小,不足以捕捉到单个光子信号。二是偏置电压稍高于击穿电压,理论上雪崩增益为无穷大,一个注入耗尽层载流子就能触发APD雪崩,产生mA量级的电流,使单光子探测成为可能。由此可见,APD的雪崩增益M仅与其反向偏压Vb大小密切相关。因此,为了获得最佳的雪崩增益MOPT,APD的偏压控制电路设计显得尤为重要。

  当APD的反向偏置电压高于雪崩击穿电压时,偏压的任何微小抖动都能改变APDs结区场强的大小,不但能影响到APD的雪崩增益M还会为探测器带来了非光子脉冲噪声,如散粒噪声、附加噪声等。因此,用作单光子探测器的APD偏压源必须满足下列条件:第一,电压要足够高,能够达到APD的雪崩击穿电压以上;第二,能够提供足够的电流,满足APD雪崩时电流迅速增大的要求;第三,要有足够小的纹波,尽量减小由于电源电压抖动带来的噪声。这就意味着APD的反向偏置电压的电压稳定性足够的高。

  3 连续可调APD直流偏压源

  由线性元件构成的线性电源电路中,电压调整管要工作在放大状态,发热量大,效率低,需要加体积庞大的散热片,此外,同样也是大体积的工频变压器也会带来工频干扰,单光子探测器核心器件APD若没做好足够的电磁屏蔽,也会为探测带来额外的误差。在较高直流电压输出时,要作到高稳定度和低纹波输出,在电路设计上较复杂。

  MAX5026是MAXIM公司生产的固定频率、脉冲宽度可调的低噪声升压转换器,是一个专门为APD,LCD,低噪声变容二极管等提供直流偏置电源的表帖元件。其内部的横向DMOS开关器件频率固定为500 kHz,且具有40 V的耐压极限。工作时使用一个工作于非连续电流模式的电感L,故意减慢开关速度,用来降低高频电压毛刺。开关速度的降低还能减小高频di/dt和dv/dt速率,最大限度地减小了通过电流环、印刷电路板线条和元件管脚问的电容向周围电路辐射或传导进来的噪声,近一步减小可能带来的噪声。

APD反向偏压源电路

  
       图1所示APD偏压源电路是由PWM升压型DC-DC转换器MAX506和铁氧体磁心电感线圈L组成,电容G3,G4和二极管D3,D4构成的倍压电路,使MAX5026输出电压可到71 V。在稳态时倍压电路的工作过程如下:芯片内部DMOS导通,电容C3将电荷转移给C4,同时电感L被充电;随着内部DMOS关断,在电感中建立起的电流使D1和D3正向导通,加到电容C5上的总电压为Vc3和Vc4之和。使用MAX5026作为APD直流偏压源有以下特点:

  (1) MAX5026内部较慢FET上升和下降时间降低时间降低了di/dt和dv/dt噪声耦合;

  (2) 非连续电流模式的电感使二极管D1自然换流,本质上消除了二极管的反相恢复带来的高频di/dt噪声;

  (3) 固定500 kHz PWM工作频率产生的可预知噪声频谱,更容易滤除,如加LC滤波网络;÷        (4) 高集成度带来低成本和小尺寸,该表帖元件面积仅为12 mm2。

 

 

  由于使用的单光子核心器件InGaAs-APD,在室温时其雪崩击穿电压30~60 V不等,雪崩击穿电流为mA量级,因此该偏置电压源电路能满足其要求。

  根据MAXIM公司给出MAX5026的资料,电路的输出电压可依据下面的关系设定:

       输出电压  
       其中,Vc是控制输入电压基准,其大小从0~2.500 V可调。

  实验发现,当电路的控制输入电压为2.500 V即输出电压为71 V输出时,1 mA电流负载时具有100 mVp-p的纹波输出,若在输出端并联一个1μF或更大一点的低等效串联电阻(ESR)和低等效串联电感(ESL)电容时,能将噪声水平降低到20 mV水平,如下图2所示,其纹波峰峰值不到40 mV。由于MAX5026采用了500 kHz固定开关频率,如采用LC滤波器或RC滤波器可以将输出纹波峰值降低到2 mV水平,足以满足APD雪崩击穿时电压的需要。

1mA负载时偏压源纹波电压输出

  
     

 

  4 数控输出APD直流偏压源

  有时使用的APD是带温度补偿的组件,组件里带有热敏电阻之类的感温元件,使用图3所示直流源电路就非常合适,图3所示电路是基于单片机控制的、具有输出数字可调的APD偏置电压源部分电路。在控制部分单片机读取APD组件中热敏电阻的值,从而修正APD的偏置电压,能实现对APD的温度补偿,此外也可以进一步修正电源电压波动带来增益的变化。

  在此电路中,MAX6102是2.5 V基准电压源。通过控制10位DA转换器MAX5304能将输出电压从24.79 V调节到71.32 V,步长为45.4 mV。如当DAC的串行输入数据为3FFH时,即控制输入电压为0 V时,输出电压为71.32 V,当串行输入数据为000H时,输出电压为24.79 V,此时控制输入电压为2.500 V。如想得到步长更小的电压输出,可选用多位数模转换器来替代MAX5304,如低功耗满幅输出12位串行数模转换器DAC7512可将步长降低到11 mV左右。

数控可调APD直流偏压源

  
       5 结 语

  基于低噪声、固定频率PWM生压转换器MAX5026的APD直流偏压源具有纹波小、成本低、体积小、设计简单和稳定性高等一系列优点。实验结果表明,该偏压电路能够满足单光子探测时APD对直流偏压源的要求。此外,鉴于这些优点,该偏压电路在电视调谐、低噪声变容二极管的偏置、数字视频解码器的调谐、电缆调制器、电缆话音通信等电路的电源系统中也得到广泛应用。

此内容为AET网站原创,未经授权禁止转载。