基于VMD-LSTM的非侵入式负荷识别方法 | |
所属分类:技术论文 | |
上传者:aetmagazine | |
文档大小:4485 K | |
标签: 变分模态分解 智能电网 LSTM | |
所需积分:0分积分不够怎么办? | |
文档介绍:非侵入式负荷识别(Non-Intrusive Load Monitoring, NILM)技术仅基于家庭电源总入口处的电流、电压信息,获得室内电器设备的电气信息。提高负荷识别的精度,对于优化能源结构、提高电能利用效率、降低能耗、节约资源具有重要意义。首先应用变分模态分解(Variational Mode Decomposition, VMD)对归一化的电流信号分解为K个IMF分量,再估计各个分量与归一化电流信号的相关系数,挑选相关系数最大的两个分量作为负荷特征,输入训练好的LSTM神经网络进行识别。算例测试结果表明,该方法在公开数据集PLAID上的识别率高达99%,在实验室采集的数据集上的识别率为96.6%,证实了所提出方法对提升负荷识别精度有显著效果。 | |
现在下载 | |
VIP会员,AET专家下载不扣分;重复下载不扣分,本人上传资源不扣分。 |
Copyright © 2005-2024 华北计算机系统工程研究所版权所有 京ICP备10017138号-2