《电子技术应用》
您所在的位置:首页 > 电源技术 > 设计应用 > 基于2SC0108T的IGBT驱动器设计
基于2SC0108T的IGBT驱动器设计
来源:电子技术应用2011年第2期
白娅梅1,李钰玺1,张亚军2
1.西北工业大学 自动化学院,陕西 西安710129; 2.长安大学 电子与控制工程学院,陕西 西安710064
摘要: 针对IGBT驱动电路复杂且保护功能不尽完善的问题,设计了一个基于2SC0108T的即插即用型IGBT驱动器,以及相应的前级驱动电路、后级功率驱动电路和故障报警电路。该驱动器具有直接模式和半桥模式、驱动信号硬件互锁、硬件死区时间可调节、IGBT过流及短路保护、驱动电源过欠压监控和易于安装的特点。结合英飞凌EconoDUAL3封装IGBT模块,完成了即插即用型IGBT驱动器的硬件设计及调试,有效减小了双绞线传输方式寄生电容及寄生电感的影响。
中图分类号: TM921
文献标识码: A
文章编号: 0258-7998(2011)02-0067-04
Design of IGBT driver based on 2SC0108T
Bai Yamei1,Li Yuxi1,Zhang Yajun2
1.College of Automation, Northwestern Polytechnical University, Xi′an 710129,China; 2.School of Electronic and Control Engineering, Chang′an University, Xi′an 710064,China
Abstract: Aiming at the problems of IGBT drive circuity complexity and indequate protection, a plug-and-play IGBT driver is designed based on the 2SC0108T, and the primary side and secondary side drive circuitry and failure alarm circuitry are designed. Two modes including direct mode and half-bridge mode are available. Drive signals are interlocked by hardware and the dead time is adjustable. It possesses the functions of over-current and short-circuit protection, low-voltage and over-voltage monitoring as well as easily Installation. Based on the EconoDUAL3 IGBT module, the hardware of the plug-and-play driver is designed and the functions are tested. It effectively reduces the impact of parasitic inductance and capacitance exists in the twisted pair transmission.
Key words : IGBT drive;plug-and-play;2SC0108T;hardware protection


    IGBT具有耐压高、电流大、开关速度高和低饱和压降等优良特点,在牵引电传动、电能传输与变换、有源滤波等电力电子领域得到了广泛的应用[1]。
    IGBT模块的保护主要由IGBT驱动器来完成。驱动器是功率主电路与控制电路之间的接口,在充分发挥IGBT的性能、提高系统可靠性等方面发挥着重要作用[2]。高性能的驱动器可使IGBT工作在比较理想的开关状态,如开关延时小、开关损耗低等[3]。本文提出的驱动器设计采用瑞士CONCEPT公司最新推出的2SC0108T模块作为核心部件[4],设计了前级驱动电路、硬件死区电路、后级功率驱动电路、故障信号调理电路,试验结果证明该驱动器具有良好的驱动及保护能力。
1 2SC0108T简介
    2SC0108T是一款高集成度低成本的超小型SCALE-2双通道驱动器。接口兼容3.3 V~15 V逻辑电平信号,栅极驱动电压为+15 V/-8 V,驱动电流为8 A,单通道输出功率为1 W,可以驱动600 A/1 200 V或 450 A/1 700 V的常规IGBT模块或并联IGBT模块,支持3级或多级拓扑。具有短路保护、过流保护和电源电压监控等功能。延迟时间为80 ns±4 ns,抖动时间为± 2ns[5]。
    为了使2SC0108T在主回路中的性能达到最优,必须设计相应的外围硬件电路,如驱动信号调理电路、IGBT功率驱动电路和故障信号调理电路,并集成到IGBT驱动器中。由于IGBT驱动信号频率较高,容易对其他模拟信号和数字信号造成干扰,而且,驱动信号线寄生电容和寄生电感对驱动器的性能、可靠性有重要影响[6],因此,传统的安装模式为驱动器和IGBT模块独立安装,通过双绞线连接以减少寄生电容、寄生电感的影响。本文从减小信号线寄生电容、寄生电感和电磁干扰(EMI)方面考虑,设计了一个直接安装于IGBT模块上的即插即用型IGBT驱动器。
    2SC0108T内部结构图如图1所示,主要由三个功能模块构成,即逻辑驱动转化接口LDI(Logic-to-Driver Interface)、电气隔离模块和智能栅极驱动IGD(Intelligent Gate Driver)。

    第一个功能模块是由辅助电源和信号输入两部分组成。其中信号输入部分主要将控制器的PWM信号进行整形放大,并根据需要进行控制,之后传递到信号变压器,同时检测从信号变压器返回的故障信号,将故障信号处理后发送到故障输出端;辅助电源的功能是将输入的直流电压经过单端反激式变换电路,转换成两路隔离电源供给输出驱动放大器使用。
    第二个功能模块是电气隔离模块,由两个传递信号的脉冲变压器和传递功率的电源变压器组成。防止功率驱动电路中大电流、高电压对一次侧信号的干扰。
    第三个功能模块是驱动信号输出模块,IGD主要对信号变压器的信号进行解调和放大,对IGBT的短路和过流进行检测,并进行故障存储和短路保护。
2 IGBT驱动器设计
    本文设计的IGBT驱动器主要由2SC0108T模块、前级驱动电路、后级功率驱动电路、故障信号调理电路构成,驱动器功能框图如图2所示。

    由控制器产生的驱动信号A和B,经过前级驱动电路调理后,分别送入2SC0108T驱动信号端INA和INB,INA和INB分别控制IGBT模块的上桥臂和下桥臂。故障报警信号经信号调理电路输出。由于需要检测IGBT的过流、短路、二次侧电压等故障状态,以增强驱动信号的触发能力并改善IGBT的开关特性[7],设计了后级功率驱动电路。  

2.2 前级驱动电路
    由于驱动器置于IGBT模块上,控制器与驱动板之间的逻辑信号走线相对较长。为了提高信号的驱动能力和抗干扰能力,设计了前级驱动电路,如图3所示。

    驱动信号先后经过了电平转换、电平箝位、死区/互锁电路和波形整形最终送入2SC0108T模块。因2SC0108T为高电平驱动方式,所以此功能电路设计成输入信号相对输出信号为反逻辑,即控制器驱动信号为低电平时,加在IGBT上的栅压为正向栅压来触发IGBT导通;反之,IGBT关断。当控制器上电复位或出现故障时,驱动信号为高电平,从而关断IGBT,提高了系统的可靠性和安全性。
    由Q101、Q102构成的电路网络主要完成两路信号的互锁和死区时间的设定,两路驱动信号的死区时间可以通过稳压管D108、D109的稳压值来调节,直接模式下(Rm=150 k?赘),稳压管D108、D109的稳压值为3.3 V。硬件死区电路有效时,经试验测得死区时间为5.08 μs,死区时间可以满足实际工程中的需要。表1为互锁电路信号作用表。
    由表1可知,2SC0108T工作在直接模式下,由于有互锁电路,避免了IGBT上下直通的可能。


2.3 故障信号调理电路
    故障状态输出端SO1、SO2实时显示IGBT模块和供电电源的状态,并通过故障报警信号调理电路上报控制器。
    因故障状态输出端SO1、SO2为集电极开路门电路,外部需接上拉电阻。当故障(初级侧欠压、二次侧欠压、IGBT过流或短路)发生时,相应的SOx输出低电平;否则,输出高电平。如果电源电压欠压,封锁驱动器并且两个故障输出端同时发出报警信号,直到电源电压工作正常。当二次侧发生故障(检测到IGBT模块短路或电源欠压)时,相应的故障输出端发出报警信号,在一个死区时间过后,相应的故障信号消失[9]。所有故障状态均通过故障信号调理电路上报控制器。因故障状态输出端SO1、SO2为集电极开路门电路,故将两个故障输出端直接短接实现“或非”逻辑,作为故障报警信号公共端。当上述任何一种故障发生时,均作为有效故障信号上报控制器,并做相应处理,这样既可以简化电路硬件设计又可以提高驱动器的可靠性。经试验测得驱动器的欠压保护门限值为12.1 V,清除欠压故障电压门限值为12.8 V。
2.4 后级功率驱动电路
    IGBT后级驱动电路为驱动信号输出通道和IGBT模块之间的电路接口。二次侧欠压、IGBT过流或短路故障状态的检测都是由后级功率驱动电路实现,如图4所示。

    VCE为IGBT集电极检测端,为了检测IGBT过流或短路,集电极检测端须通过图4所示的电路连接到IGBT的辅助集电极上。GH和GL分别为栅极开启和关断端,通过开启、关断栅极限流串并网络连接到IGBT的栅极。栅极限流阻值对驱动信号的前后沿陡度和IGBT的开关特性有影响。当阻值增大时,可以抑制栅极脉冲前后沿陡度、防止寄生振荡、减小开关dic/dt值、限制IGBT集电极尖峰电压;当阻值减小时,可能会导致G、E之间发生振荡以及IGBT集电极dic/dt值增加,引起IGBT集电极尖峰电压,使IGBT损坏。该功能电路的作用是,若栅极限流电阻发生开路故障,此电阻网络的阻值会增加,可以抑制驱动信号前后沿陡度、减小开关dic/dt值,可以保证即使栅极限流网络发生开路故障时,还能够触发IGBT,从而提高栅极后级驱动电路的可靠性[10]。
    二极管D1、D2用于二次侧欠压保护。当栅极驱动信号电压欠压时,不能触发IGBT导通,二极管因承受正向电压而导通,集电极检测端电压升高到设定值时,封锁相应的后级栅极驱动通道并通过故障输出端发出报警信号。为了防止误触发,二极管漏电流必须小。因正常导通时栅极驱动电压为+15 V,IGBT辅助集电极电压相对较低,为防止二极管反向击穿,其阻断电压应大于40 V。
    当栅极处于失控状态、主电路突加电压时,由于集电极-栅极、栅极-发射极存在寄生电容,集电极电势的突然变化,就会有大小为C·du/dt的电流流过寄生电容(C为寄生电容容值),使栅极电势上升,误触发IGBT。为防止上述情况的发生,在GL和VE之间接一电阻Reg,为IGBT的栅极和发射极提供一个低阻抗回路,其阻值要求为22 kΩ或更大。
    REF端内部集成有可以提供150 μA的恒流源,参考电阻Rth的阻值通过如下公式进行计算:
    
    实际应用中,设计者可以根据IGBT模块的过流倍数来选取合适的关断门限值。
    CA1、CA2为响应时间电容,其作用是以电阻Rth端电压为参考,通过与其串联电阻的充电时间特性来确定响应时间。
    当触发IGBT导通时,测试信号无效。而IGBT导通需经过一定的开通时间,如果没有响应时间电容Ca,则在IGBT开通过程中,将导致比较器正极性端电压高于Vth而误报警。若电容选择合适,在IGBT开通过程中,使电容充电时间大于开通时间即可避免上述情况的发生。通常情况下,不同额定电流值的IGBT模块导通压降不同。额定电流为450 A的IGBT的导通压降一般情况为2 V,若IGBT工作中发生过流,其集电极电压会上升,并且正比于电流值。过流故障发生前电容Ca的电压为正常导通压降,过流时电容两端的电压与时间的关系为:y=2e-t/RC+UCE(1-e-t/RC)。当响应时间电容为33 pF,电阻R为120 kΩ,Vth为5.85 V,过流导通压降UCE为10 V时的MATLAB仿真曲线如图5所示。

    实践中可以通过选择响应时间电容的容值,关断门限值电压Vth,IGBT过流倍数来计算图5中t1的值:
    
    与传统的IGBT驱动器相比,即插即用型驱动器采用了与IGBT模块一体化的设计思想,减小了驱动信号线上寄生电容和寄生电感的影响,提高了驱动器的可靠性。本文基于2SC0108的即插即用型IGBT驱动器,通过对前级驱动电路、后级功率驱动电路及故障信号调理电路的设计,实现了多工作模式可选、多种故障状态检测及保护等功能。即插即用型IGBT驱动器的调试、试验和工程应用都验证了本驱动器设计的有效性和实用性。
参考文献
[1] 周志敏,纪爱华.高效功率器件驱动与保护电路[M].北京:人民邮电出版社,2009.
[2] SCHWARZER U,RIK W,DONCKER D.Design and Implementation of a driver board for a high power and high frequency IGBT inverter[A].Power Electronics Specialists Conference,IEEE,2002.
[3] 黄先进,蒋晓春,叶斌,等.智能化IGBT驱动电路研究[J]. 电工技术学报,2005,20(4):89-93.
[4] THALHEIM J,GARCIA O.Highly flexible and low-cost gate driver cores for voltage classes of up to 3300V[J]. Bodos′s Power Systems Magazine,2009(6):26-27.
[5] HORNKAMP M,PAWEL S,GARCIA O.Latest generation IGBT gate drivers[J].Power Systems Design Europe Magazie,2009(10):21-23.
[6] 徐延东,张舟云,徐国卿.一种用于大功率IGBT模块的驱动电路[J].微特电机,2004(8):29-35.
[7] GRBOVIC P J,GRUSON F,IDIR N,et al.Turn performance  of reverse blocking IGBT(RB IGBT) and optimization using advanced gate driver[J].Power Electronics,IEEE Transactions IEEE,2010(4):970-980.
[8] ZHANG B,HUANG A Q,CHEN B.A novel IGBT gate driver to eliminate the dead-time effect[A].Industry Applications Conference,IEEE,2005.
[9] THALHEIM J,RUEDI H.Smart power chip turing[J].Bodos′s Power Systems Magazine,2007(5):20-23.
[10] 潘星,刘会金.IGBT功率器件工作中存在的问题及解决方法[J].电力自动化设备,2004(9):9-14.
[11] Using the NTC inside a Power Electronic Module.Infineon Technologies AG[EB/OL].www.infineon.com.2010.10.
[12] MAJUMDAR B,MUKHERJEE P,TALUKDAR F A,et al. IGBT gate drive circuit with in-built protection and immunity to transient fault[A].Industrial Technology IEEE International Conference,IEEE,2000.

此内容为AET网站原创,未经授权禁止转载。